煤与瓦斯突出强度预测的IGABP方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50534050;50774080);中国矿业大学校科研究基金资助项目(2007A033)


Prediction of coal and gas outburst intensity with Incorporate GeneticAlgorithm Based Back Propagation Neural Network(IGABP)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统松散式(Genetic Algorithm Based Back Propagation Neural Network, GABP)模型应用于复杂煤与瓦斯突出预测时,存在GA自身性能及模型间相对孤立等不足,提出二者优势互补的IGABP一体化模型。IGABP首先在自适应交叉、变异率等方面进行改进,以提高GA自身的性能。其次,将BP导向性训练以算子的形式引入到标准GA进化过程,实现了GA寻优搜索的随机性向自主导向性转变。BP对GA搜索到的近似最优值进行微调,GA算法的收敛速度得到提升,确定精确解的位置

    Abstract:

    For the prediction of coal and gas outburst intensity, Incorporate Genetic Algorithm Based Back Propagation Neural Network(IGABP) is proposed to solve the limitations in the traditional GABP such as timeconsuming, optimal stop condition of GA pretreatment indeterminacy, independency and complex task of great importance etc. IGABP addresses some improvements in adaptive crossover and mutation probability to promote GA performance. And with the introduction of BP operator in the evolution of GA operations, the standard GA optimization is from random search to selfguiding search and the convergence rate of GA is upgraded, as well as the determination ability of exact solution. With a simulation as a case study, it is found that the minimum error and standard error with IGABP are 0.012 and 0.227, respectively, compared with -0.126 and 1.529 by traditional GABP.

    参考文献
    相似文献
    引证文献
引用本文

杨敏,汪云甲,李瑞霞.煤与瓦斯突出强度预测的IGABP方法[J].重庆大学学报,2010,33(1):113-118.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码