改进PDAAI方法的运动目标跟踪性能分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

教育部博士点基金资助项目(20070611013)


Performance analysis on improved PDAAI for moving target tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决概率数据关联法(PDAAI)的信号模型与光电探测跟踪系统不符的实际问题,提出了采用目标信号幅度连续性和运动轨迹一致性进行运动分析的改进PDAAI (MPDAAI)。该方法利用目标信号幅度在短时间内变化缓慢,相关性强的特点,运用一阶马尔可夫模型描述目标的运动信息和幅度信号,分析量测点的运动信息和幅度信号关联过程,并详细计算和讨论典型密集杂波环境下PDAAI和MPDAAI的CramerRao估计误差下界。理论分析和试验结果表明,MPDAAI估计出的目标状态较PDAAI更加准确,可信程度更高,能更进一步提高目标检测跟踪的可靠性。

    Abstract:

    Aim at the problem that the EO imaging tracking system is inconsistent with the model of probabilistic data association with amplitude information (PDAAI), which supposes that the greater the amplitude value is, the greater the probability of being the tracked target will be, a modified PDAAI (MPDAAI) is presented . Based on the fact that the amplitude and the motion of the interested target are consistent in a short period, the MPDAAI models the amplitude information and the motion information of the target as well as their consistency with Markov stationary signal to analyze the association procedure of motion and amplitude. The lower bounds of CramerRao estimation error for PDAAI and MPDAAI are calculated and discussed in detail. The theoretical analysis and experimental results show that estimating the target motion with the MPDAAI will be more accurate and more reliable than estimating with the original PDAAI.

    参考文献
    相似文献
    引证文献
引用本文

黄扬帆,李正周,谭菊.改进PDAAI方法的运动目标跟踪性能分析[J].重庆大学学报,2010,33(6):77-82.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-02-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码