多尺度和多方向特征的图像去噪
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展863计划资助项目(No.2008AA01Z202); 重庆市自然科学基金资助项目(No.2009BB2359); 中国博士后科学基金资助项目(No.20080430096);中央高校基本科研业务费资助(CDJRC10160004)。


Multiscale and multiorientation features for image denoising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于多尺度和多方向的自适应图像阈值去噪方法.先对图像进行非下采样Contourlet变换得到不同尺度和不同方向上的变换系数,然后根据变换系数特征,引入尺度和方向阈值因子,用分解尺度系数的均值和区域能量表示图像的纹理信息.在相同分解尺度下,区域能量越大,表示该方向具有更多的纹理信息,阈值应该设置就越低,反之阈值就越大.根据尺度和方向阈值因子,自适应地确定图像去噪的阈值.最后对变换系数进行反变换,实现图像去噪.实验结果表明,与小波变换和Contourlet变换相比,保留了更多的图像轮廓细节,提高了图像

    Abstract:

    An adaptive algorithm for image denoising is proposed based on the multiscale and multiorientation features. The coefficients in different scales and different directions are obtained by image decomposition using the nonsubsampled contourlet transform. Then thresholds functions are adaptively set with these coefficients. The texture of the image information is introduced by using the mean of decomposition scale and the energy of regional. The greater the energy, the more information of the texture while the same decomposition scales, the smaller the threshold is set. On the contrary, the greater the threshold is set. After the denoising and then reconstruction of these coefficients, image denoising is implemented. Compare to the wavelet transform threshold and contourlet transform threshold, the nonsubsampled contourlet transform pick up the image detail better and improve the quality of the image.

    参考文献
    相似文献
    引证文献
引用本文

陈建军,田逢春,邱宇,李显利.多尺度和多方向特征的图像去噪[J].重庆大学学报,2010,33(8):23-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码