Abstract:Based on the theory of solid and liquid coupling wave mechanics, the micro-dynamical characteristics caused by the transport of ultrasonic in porous media at near wellbore zone, including the elastic deformation of rock, the elastic crossflow of pore fluid and frame solid, and fluid squirt-flow produced by pore elastic deformation, are analyzed. Analysis of kinetics of peristaltic difference of porosity radius in porous media is presented. The characteristics of the removal of inorganic scale particle in porous media by using ultrasonic technology are also studied. Besides, by applying high power ultrasonic technology, the acoustic energy gathering in porous media at near wellbore zone leading to fracture of part rocks is illustrated. According to these analyses, the micro-dynamical mechanisms, such as inorganic scale fragmentation, ultrasonic cavitations, ultrasonic friction, ultrasonic peristaltic transport and ultrasonic fracture-making, occurred in inorganic scale plugging removal by high power ultrasonic technology are proposed.