Abstract:Entropy changes in chemical reaction of Cu/Al intermetallic compounds formation in Cu/Al oxyacetylene flame brazing are calculated, and the tendency of Cu/Al intermetallic compounds form and transform to CuAl2 is analyzed with the method of chemical thermodynamics. The microstructure and characteristics of elements distribution and diffusion of the Cu/Al oxyacetylene flame brazing joint are analyzed by XRD, SEM and EDS. Results show that, under the condition of Cu/Al oxyacetylene flame brazing, the CuAl2 intermetallic compounds formed by the direct reaction of Cu&Al atoms and the sustained reaction of Cu/Al intermetallic compounds with Al atoms. CuAl has relatively strong independent transformation trend. The results of thermodynamics analysis and calculation are consistent with the XRD of joint. Brazing joint can be divided into three feature regions: the α-Al and binary eutectic (α-Al+CuAl2) region is near Al side with the width of about 30 μm; the fine multiple eutectic structure is formed in brazing seam center near Al side with the width of about 150 μm; and the region near Cu substrate with the width of about 120 μm, where Cu diffuses largely and reacts richly with Al and massive CuAl2 is formed like corals.