小样本贫信息条件下高炉冶炼烧结终点组合预测法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(60973051);河南省重大科技攻关项目(092102210112)


Combination forecasting method of BTP in blast furnace under the conditions of small samples and poor information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于烧结过程具有不确定性、多变量耦合、时变时滞的特点, 并且烧结终点受多种因素的影响, 采用传统控制方法难以将烧结终点控制在要求的范围内, 提出应用支持向量机优良的时序预测性能,以及贝叶斯理论能够利用样本信息和先验知识来简化预测模型和优化参数的特性, 建立了贝叶斯支持向量机烧结终点的预报模型。首先对烧结终点的机理分析,后分别叙述贝叶斯框架理论和LS-SVM算法,并将贝叶斯证据框架应用于最小二乘支持向量机模型参数的自动选择,建立起时间序列的烧结终点非线性预测模型。在贝叶斯推断的第一层,进行模型参数的选择;在

    Abstract:

    The iron ore sintering process is a complex object with the characteristics of uncertainty, multivariable coupling, time-varying and time-delay. The burning-through-point (BTP)is affected by many factors and difficult to be controlled to the required precision by conventional control methods. A BTP prediction method is proposed by using the excellent time series prediction performance of support vector machines (SVMs), and the characteristic that Bayesian theory can make use of sample information and prior knowledge to simplify prediction model and optimize parameters.Firstly, the mechanism of BTP is analyzed, the Bayesian theory and LS-SVM are elaborated respectively, and the Bayesian evidence framework is applied to least squared support vector machine(LS-SVM) regression in order to infer non-linear models for predicting a time series.On the first level of inference, model parameters are selected and on the second level the hyper-parameters are selected.The kernel parameter are tuned on the third level framework,and on this level the relevant inputs are selected.A LS-SVM model is proposed on the basis of the Bayesian LS-SVM models. The results reveal that the BTP of sinter can be accurately predicted by this model even with small samples and poor information. It is concluded that the LS-SVM model is effective with the advantages of high precision, less samples required and simple calculation.

    参考文献
    相似文献
    引证文献
引用本文

王爱民,宋强,李华,张运素,徐蕾.小样本贫信息条件下高炉冶炼烧结终点组合预测法[J].重庆大学学报,2011,34(5):123-129.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-11-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码