装配故障率的灰色最小二乘支持向量机分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划资助项目(2009AA04Z119);国家自然科学基金资助项目(50835008);国家“高档数控机床与基础制造装备”科技重大专项(2009ZX04014-016;2009ZX04001-013;2009ZX04001-023;2010ZX04014-015);数字制造装备与技术国家重点实验室(华中科技大学)开放基金资助


Assembly fault rate analysis using grey relation and least squares support vector machines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了对装配故障率进行定量研究,用最小二乘支持向量机(LSSVM)对装配故障率与属性之间的关系进行了建模。在该模型中对影响故障率的5M1E(Man, Machine, Material, Method, Measurement and Environment)因素用装配可靠性评价方法(Assembly Reliability Evaluation Method, AREM)提取的装配故障率属性进行了改进,建立了装配故障率的全属性模型;为提高求解效率以及使装配可靠性控制更具有目的性,用灰色关联分析对装配故障率的属性进行提取,得到了主要属性,并用遗传算法对主要属性建立的装配故障率模型进行参数优化。用灰色关联分析提取的主要属性的LSSVM模型与全部属性建立的LSSVM模型和主要属性建立的BP神经网络模型的装配故障率预测进行比较,结果表明用灰色关联分析的LSSVM故障率模型不仅建模简单而且还具有预测精度高等优点。

    Abstract:

    To get the relationship between assembly fault rate and its attributes, least squares support vector machine (LSSVM)is introduced to quantitatively study assembly fault rate. Aiming at the drawbacks of assembly reliability evaluation method(AREM), the attributes of assembly-fault-rate-affecting 5M1E(Man, Machine, Material, Method, Measurement and Environment) factors obtained by AREM are improved, hence the LSSVM model with all attributes is established. To reduce the time of calculating the assembly fault rate and provide the priority for assembly reliability improvement, grey relation analysis is applied to extracting the main attributes, at the same time genetic algorithm(GA)is used for parameter optimization in LSSVM. The assembly fault rate analysis results show that the method using grey relation analysis and least square support vector machine is simpler and more accurate compared with other methods such as LSSVM model using all attributes and BP neural network using main attributes.

    参考文献
    相似文献
    引证文献
引用本文

张根保,刘佳,王国强,范秀君.装配故障率的灰色最小二乘支持向量机分析[J].重庆大学学报,2011,34(9):21-25.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码