动态时间规整算法在局部放电模式识别中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划资助项目(973项目)(2009CB724505-1);输配电装备及系统安全与新技术国家重点实验室自主研究资助项目(2007DA10512708103)


Application of dynamic time warping algorithm to partial discharge pattern recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用试品升、降压过程中的视在放电量-施加电压序列作为特征量,并引入动态时间规整(DTW)算法进行局部放电模式识别以区分不同的缺陷类型。算法在训练阶段首先对训练样本和测试样本进行矢量量化(VQ),以码本码字代替原始矢量实现数据压缩,再以训练样本的码字构造DTW参考模板。在测试阶段,计算测试样本与每类放电参考模板的平均DTW距离,并利用快速匹配(FM)算法加快DTW运算过程,最后应用最近邻识别准则得到识别结果。对5类放电的200个样本的测试结果表明,DTW算法具有识别率高和易拓展的优点,并且FM算法能够节省56%计算量和提高DTW算法的识别率。

    Abstract:

    This study uses the data sequences of apparent charge versus applied voltage (ΔQ-U) in the process of stepping-up/down the voltage as the characteristic features of partial discharge (PD). Based on Dynamic time warping (DTW) algorithm, a method is introduced to realize PD pattern recognition for insulation defect models. In the training process of DTW classifier, the train and test samples are processed by vector quantization (VQ). Moreover, the original vectors are substituted by the codeword to realize data reduction, and the DTW reference templates of various PD types are constructed by the corresponding train samples. In the testing process, the average DTW distances between test samples and each reference templates are calculated based on the accumulated distances. Recognition results are obtained by the recognition rule of nearest neighbor. The new algorithm is also supported by Fast Match (FM) technique to speed up the DTW matching process. The recognition results from five PD sources and 200 samples demonstrate the high classification rates and easy expansion of the proposed DTW algorithm. FM algorithm can save 56 percent computational time and improve the classification rates.

    参考文献
    相似文献
    引证文献
引用本文

汪可,杨丽君,廖瑞金,邓小聘,周天春.动态时间规整算法在局部放电模式识别中的应用[J].重庆大学学报,2011,34(12):54-60.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码