摘要:针对虚假模态影响特征系统实现算法识别结果的问题,提出用奇异值分解结合模态能量水平来剔除特征系统实现算法识别结果中的虚假模态。利用奇异值分解(SVD)方法滤除信号中的部分噪声,减少噪声模态并提高识别结果精度,利用输出矩阵、状态矩阵的特征值和特征向量以及输入分配矩阵计算出识别结果中各阶模态能量矩阵,对其进行奇异值分解得到最大奇异值,将其作为各阶模态对输出能量贡献的衡量指标,称之为模态能量水平,然后由计算模态与噪声模态能量为零的特点剔除识别结果中的虚假模态。通过数值仿真和实例分析验证了方法的有效性。