免疫遗传优化Elman神经网络的旋转机械故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市自然科学杰出青年基金计划资助项目(SCTC,2011JJJQ70001);重庆市科技攻关计划资助项目(SCTC,2011AC3063)


Rotating machinery fault diagnosis based on Elman neural network optimized by immune genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对旋转机械故障诊断过程中故障知识相互关联的过程难以用传统机器学习模型快速得到全面的典型故障数据,提出一种免疫遗传算法(immune genetic algorithm,IGA)优化Elman神经网络的故障诊断模型。首先对滚动轴承振动信号进行经验模式分解(empirical mode decomposition,EMD),得到多个内禀模态分量(intrinsic mode function,IMF),再提取表征状态特征的内禀模态分量能量构建特征向量输入到IGA优化的Elman神经网络进行故障模式辨识,IG

    Abstract:

    As it’s difficult to get comprehensive fault information with traditional machine model in the interrelated process of fault knowledge in rotating machinery fault diagnosis,an immune genetic algorithm (IGA) is proposed to optimize Elman neural network. Fault vibration signals are decomposed into several stationary intrinsic mode functions (IMF) first,then the instantaneous amplitude energy of the IMF which has the fault characteristics are computed and regarded as the input characteristic vector of the Elman neural network optimized by IGA algorithm for fault classification. EMD decomposition adaptively isolates fault vibration signals from original signals. IGA algorithm has more superior performance on global optimization and convergence speed. So it can improve the fault diagnosis accuracy and the adaptive dynamic memory of the Elman neural network. The result of rolling bearings fault simulation experiments show that,compared with traditional fault diagnosis model,the proposed method significantly improves the diagnostic accuracy and generalization ability of the typical failure of the rolling bearings.

    参考文献
    相似文献
    引证文献
引用本文

陈法法,汤宝平,黄庆卿.免疫遗传优化Elman神经网络的旋转机械故障诊断[J].重庆大学学报,2012,35(5):7-13.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码