BP神经网络和遗传算法用于曲轴填充性能的优化设计
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市自然科学基金重点资助项目(CSTC2009BA4065)


BP neural network and genetic algorithm for thefilling properties optimization of crankshaft
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对曲轴空间分模模具存在的深型腔难填充结构,提出了采用楔形飞边槽结构改善填充性能的方法。基于MATLAB平台,将BP 人工神经网络与遗传算法应用于楔形飞边槽结构参数优化设计。首先利用正交试验设计安排试验样本,对所得的样本进行有限元模拟,获得各方案坯料的最小未填充距离,作为BP神经网络训练的导师信号。再结合遗传算法,以最小未填充距离为目标,得到楔形飞边槽结构的最优参数。最后通过数值模拟验证并比较遗传算法预测结果与数值模拟结果的误差。结果表明,误差在5%以内。将优化参数应用于实际生产,坯料能够完全充满模具型腔

    Abstract:

    The structure of wedge flash is proposed to improve the filling properties for deep cavity structure of crankshaft die with dimensional splitting mold. BP genetic algorithm is applied to optimize the structure parameters of wedge flash based on Matlab. Samples which are selected by orthogonal test are analyzed via FEM, and the minimum unfilled distance obtained are employed to conduct the BP neural network training. Then the optimum parameters with minimum unfilled distance are gained from genetic algorithm. Error between the parameters predicted and the results get from simulations is less than 5%. The productive practice indicates that the cavity is fully filled and the material utilization ratio increases from 75.7% to 81.4%, which confirms the correctness of optimization of wedge flash structure.

    参考文献
    相似文献
    引证文献
引用本文

周杰,卢先正,舒锐志,凌君. BP神经网络和遗传算法用于曲轴填充性能的优化设计[J].重庆大学学报,2012,35(5):52-56.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码