粒子群优化的多尺度形态滤波器消噪方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市自然科学基金杰出青年基金计划资助项目(CSTC,2011JJJQ70001);重庆市科技攻关计划资助项目(CSTC,2011AC3063)


De nosing method based on multiscale morphological filter optimized by particle swarm optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的形态学滤波器难以适应机械设备振动信号的冲击、非线性和背景噪声较大等特点,提出了基于粒子群优化的多尺度形态滤波器构造方法。根据形态学算法的特性,构造了多尺度形态学滤波器,对于形态学滤波运算中的重?问翁峁顾阕樱捎镁哂腥钟呕阅艿牧W尤核惴ǜ菪藕诺奶氐阕允视ρ∪。迪至俗钣怕瞬ㄆ鞯墓乖?将噪声信号通过不同尺度的形态学滤波器进行滤波,将获得的多个滤波信号根据权值运算获得最终的去噪信号。通过仿真实验和轴承故障信号的分析表明,该形态学滤波器能够实现较好的滤波效果,可以有效地对机械设备的故障信号进行消噪。

    Abstract:

    The traditional morphological filter is difficult to remove the noise of the vibration signal,because the signal has the characteristics of shocking and nonlinear. A new method based on multiscale morphological filter optimized by particle swarm optimization algorithm is proposed. The multiscale morphological filter is constructed according to the character of morphological algorithm. The particle swarm optimization algorithm is used to select the adaptive structure element,which plays an important role in morphological filter,achieving to get the optimal morphological filter. The signal is filtered through different scales of morphological filters and the noise removed signal is gotten through weight algorithm. The simulated signal and the bearing fault signal are analyzed,and the results show that the optimal morphological filter works better in removing noise and can effectively reduce the noise of the mechanical equipment.

    参考文献
    相似文献
    引证文献
引用本文

董绍江,汤宝平,陈法法.粒子群优化的多尺度形态滤波器消噪方法[J].重庆大学学报,2012,35(7):7-12.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-04
  • 出版日期:
文章二维码