Abstract:With the rapid development of power industry in China,the traditional single angle steel members of the transmission tower cannot meet the requirements of high voltage, multi-loop, high-load and so on. By doing experiments with double-angle cruciform section, whose specification are L160×12,L160×14,L160×16, we analyze the ultimate bearing capacity of main components which constitute UHV transmission tower. Meanwhile, we use the FEM to deal with the influence of the parameters including different ratios of slenderness, different number and location of fill plate, etc. The calculation results are comperred with each other based on some general codes. The results show that, for some test pieces with certain ratios of width to thickness, other codes and Eurocode 3 code are not safe, but ASCE10-97 code is completely unsafety. So we propose the modifier formulas of calculated length. The best way of arranging plates is uniform layout and the best space between plates is existed.