静态小波域内特征对比度多聚焦图像融合算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(No60974090);中央高校基本科研业务费资助项目(NoCDJXS10172205);中央高校基本科研业务资助项目(CDJXS12170003)


Multifocus image fusion scheme based on feature contrast in lifting stationary wavelet domain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多聚焦图像融合问题,提出了一种新的基于提升静态小波变换(lifting stationary wavelet transform, LSWT)的多聚焦图像融合方法。对经LSWT分解得到的不同频域子带系数采用不同的系数选择方案。在融合低频子带系数时考虑到人眼视觉对图像局部对比度比较敏感的特性,引入了一种新的局部特征对比度的概念,并给出了低频子带系数的选择方案。在融合高频子带系数时,充分考虑到人眼视觉对图像边缘细节比较敏感的特性而对单个像素的亮度不敏感的特性,引入了一种适应于高频子带系数的特征对比度的概念,设计出一种基于特征对比度的系数选择方案。实验证明,算法相对于传统的基于图像对比度的图像融合方法,能够提取更多的有用信息并注入到融合图像中,得到视觉效果更好,更优量化指标的融合图像。

    Abstract:

    A novel multifocus image fusion method based on lifting stationary wavelet transform (LSWT) is proposed. The selection principles, namely fusion rules of different subband coefficients, are discussed in detail. Local feature contrast is presented according to the human vision system (HVS), which is highly sensitive to the local image contrast level. Then, the fusion rule for the low-frequency subband coefficients fusion is introduced. To choose the high frequency subband coefficients, another local feature contrast is developed according to the human vision which is often sensitive to edges and directional features, but insensitive to real luminance at independent positions. Then, a novel fusion rule is proposed for fusion of the high frequency subband coefficients. Experimental results demonstrate that the proposed image fusion method is effective and can provide better performance in fusing multifocus images than the traditional contrast-based image fusion algorithms in term of informal visual inspection and objective criteria in multi-focus image fusion.

    参考文献
    相似文献
    引证文献
引用本文

李兆飞,柴毅,郭茂耘,李华峰.静态小波域内特征对比度多聚焦图像融合算法[J].重庆大学学报,2012,35(10):109-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-11-08
  • 出版日期:
文章二维码