Abstract:The reaction characteristics of fuel-lean CH4 catalytic partial oxidation over Rh are investigated numerically in a micro-channel, by using detailed elementary mechanism, focusing on the effects of inlet temperature, equivalence ratio of CH4/O2 and added H2O on catalytic partial oxidation of CH4. The results show that over Rh surface reaction of CH4 is kinetically controlled, while that of O2 is controlled by mass transport. Duo to the high reactivity of O2, CH4 is firstly oxidized and both complete and partial oxidation products are generated. After O2 is consumed, steam reforming begins, however, CO2 reforming does not appear. Increase of the equivalence ratio of C/O leads to increase of carbon deposition at reforming zoon, as thus both conversion of CH4 and production of syngas decrease, even the reforming process is stopped. The added H2O could dramatically inhibit carbon deposition, and promote the formation of H2 and CO2.