二、三类边界条件下扩散方程的稳态近似分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50704040);重庆市自然科学基金资助项目(CSTC 2009BB4197)


Analysis of diffusion equation with the second and third boundary conditions based on steady state approximation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    描述反应器内团块、粉粒或液滴内的传质都离不开扩散方程。获得工程上可利用的扩散方程的近似解,既是实践需要,也是理论发展方向之一。在给出对有限长度区间内扩散方程进行稳态近似法处理过程的同时,将动力学中常用的浓度随时间不变的稳态假设发展为浓度变化率随时间不变的稳态假设,继而获得了一具体扩散问题的近似分析解。稳态近似法获得的结果和精确解随时间变化是同步的;近似解与接近最终稳态的情形吻合程度好,与远离最终稳态的情形吻合程度稍差些;稳态近似法获得的结果基本上满足总体质量守恒。

    Abstract:

    One dimensional diffusion equation is widely used to describe mass transfer in particles or droplets in a reactor. The length of the definition domain of the one-dimension Fick equation is limited, because it is determined by the scale of the particles or the droplets. The diffusion equation with a certain length of definition domain has no analytic solution unless series solution. So, to obtain approximate solutions of diffusion equation is of theoretical significance and practical significance. Firstly, assumption of constant concentration variance ratio is used instead of assumption of constant concentration frequently used in kinetics of process metallurgy. Secondly, a detail process to deal with diffusion equation based on steady state approximation is given, and the approximate solutions of the diffusion equation at certain conditions are obtained at the same time. By comparing the approximate solutions with the numerical solutions, it is concluded that the diffusive process of non-steady state is considerably well predicted by the approximate solutions, and approximate solutions accord with the situations being close to the final steady state a little better than accord with the situations being close to the begin of the diffusion, and it fairly satisfies the total mass balance.

    参考文献
    相似文献
    引证文献
引用本文

王成善,黄太镭,穆小静.二、三类边界条件下扩散方程的稳态近似分析[J].重庆大学学报,2013,36(9):118-126.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-10-05
  • 出版日期:
文章二维码