基于图像梯度和2DPCA的单样本人脸识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60975015)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于图像梯度的2DPCA的算法用于单样本人脸识别。采用图像梯度方法进行人脸识别具有光照不变性、能提取丰富的局部纹理信息等优点,但是这种方法只考虑了图像的局部信息,并没有充分利用全局信息。基于这种问题,文章考虑融合全局和局部信息进行单样本人脸识别。对于全局人脸信息的提取,采用2DPCA方法,相对与传统PCA方法,2DPCA能够在不破坏图像二维结构的基础上进行全局信息提取。由于上述两种方法在图像匹配时所采用的匹配算法不一致,文章根据两种匹配方式的特点进行改进和融合,提出了一种新的匹配方案。实验证明,基于图像梯度和2DPCA的算法在单样本人脸识别问题上识别率优于传统方法。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

吴凡,杨丹.基于图像梯度和2DPCA的单样本人脸识别[J].重庆大学学报,2014,37(Z2):254-258.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-10-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-04
  • 出版日期:
文章二维码