遗传算法的DV-Hop算法改进
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划项目(2012BAD35B02);安徽省青年人才基金重点项目(2013SQRL083ZD);宿州学院科研平台开放课题(2012YKE38);安徽高校省级自然科学研究重点项目(KJ2014A247)。


An improved DV-Hop algorithm based on genetic algorithm
Author:
Affiliation:

Fund Project:

Supported by National Key Technology Research and Developmeat Program of the Ministry of Science and Technology of China(2012BAD35B02);Youth Talent Foundation of Anhui Province (2013SQRL083ZD);Scientific Research Project of Suzhou College (2012YKE38)and Natural Science Research Program of Universities in Anhui(KJ2014A247).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    DV-Hop算法中,平均每跳距离是影响定位精度的因素之一。针对平均每跳距离带来的定位误差,对锚节点和未知节点的平均每跳距离进行了改进和优化。首先引入遗传算法计算锚节点的平均每跳距离;然后利用跳数小于等于3的锚节点的平均每跳距离加权处理未知节点的平均每跳距离,减少平均每跳距离带来的误差。仿真结果表明,在不增加硬件开销的基础上,改进算法能够有效提高算法的定位精度,并且具有较好的稳定性。

    Abstract:

    The average per-hop distance is one of the factors which affect the positioning accuracy in DV-Hop algorithm. Aiming at positioning errors caused by the average distance per hop, the average distance per hop of anchor nodes and unknown nodes have been improved and optimized in this paper. First, the average per hop distance of anchor nodes is computed by introducing genetic algorithm; Then the average distance per hop of the unknown node is weighted by using the average distance per hop of anchor nodes which hop count is less than or equal to 3 to reduce errors caused average distance per hop. Ultimately the accuracy of positioning is improved. Simulation results show that without additional hardware cost, the improved algorithm can effectively improve the positioning accuracy of the algorithm and has good stability.

    参考文献
    相似文献
    引证文献
引用本文

张万礼,宋启祥.遗传算法的DV-Hop算法改进[J].重庆大学学报,2015,38(3):159-166.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-01-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-07-02
  • 出版日期:
文章二维码