深锥浓密机底流浓度预测与外部结构参数优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

“十一五”科技支撑计划课题资助项目(2008BAB32B03)。


Underflow concentration prediction and external structure parameter optimization of deep cone thickener
Author:
Affiliation:

Fund Project:

Supported by The 11th Five Year Key Programs for Science and Technology Development of China(2008BAB32B03).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对困扰支持向量机(SVM)模型参数选择问题,结合遗传算法(GA),建立了深锥浓密机底流放砂浓度的GA-SVM预测模型,研究了不同结构参数状态下底流浓度的变化规律,进行了深锥浓密机的外部结构参数优化选择。以司家营铁矿为例,在最优底流放砂浓度为72%的条件下,经外部结构参数优化后的深锥浓密机锥高10 m、锥角为30°,系统稳定可靠、底流连续均匀,动力荷载较同类矿山降低约15%,压耙停机故障降低80%。

    Abstract:

    To overcome the difficulty of choosing appropriate external structure parameters for support vector machine(SVM)models, the genetic algorithm(GA)is introduced and a GA-SVM optimal prediction model of underflow concentration is built. The change laws of thickener underflow concentration are discussed under different parameters, and the structure parameters of deep cone thickener are optimized. Sijiaying iron mine is taken as an example, and the results show that with the optimal underflow concentration of 72%, the optimized external structure parameters of deep cone thickener are 10 m high and 30 degree cone. The optimized deep cone thickener in Sijiaying runs steady with continuous underflow concentration flowing. Compared with other similar thickeners, its energy load and fault probability are reduced by 15% and 80% respectively.

    参考文献
    相似文献
    引证文献
引用本文

王新民,张国庆,赵建文,李帅.深锥浓密机底流浓度预测与外部结构参数优化[J].重庆大学学报,2015,38(6):1-7.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-01-04
  • 出版日期:
文章二维码