基于人工蜂群算法优化支持向量机的 采场底板破坏深度预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51274117)。


Prediction of floor damaged depth in working area based on support vector machine and artificial bee colony algorithm
Author:
Affiliation:

Fund Project:

Supported by National Natural Science Foundation of China (51274117).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为确定合理的底板防水煤岩柱尺寸,减少底板突水安全事故的发生,利用支持向量机(SVM)与人工蜂群算法(ABCA)综合研究底板破坏深度问题。由于SVM训练参数惩罚因子 C 和核函数宽度 g 的选择对预测精度的影响显著,采用ABCA优化该训练参数的选择过程,建立基于SVM的底板破坏深度预测模型。选取采深、煤层倾角、采厚、工作面斜长、底板抗破坏能力和是否有切穿断层或破碎带作为影响底板破坏深度的主要影响指标,利用现场实测的30组数据作为样本对该模型进行训练和预测。结果表明:该预测模型的平均相对误差为12.5%,平均绝对误差为 0.986 m ,均方误差为0.005,平方相关系数为0.980,较其他预测模型具有更强的泛化能力和更高的预测精度。

    Abstract:

    To determine a reasonable size of floor waterproof coal pillar and reduce floor water invasion incidents, support vector machine (SVM) and artificial bee colony algorithm (ABCA) are used to research floor failure depth problem. Prediction accuracy is significantly affected by SVM training parameter choice of penalty factor C and kernel width g . ABCA is used to optimize the selection of training parameters, and a floor failure depth prediction model is established based on SVM. Selecting mining depth, coal seam dip, mining thickness, face plagioclase, anti-destruction capability of floor and whether there is fault fracture zone cutting through the floor as major impact indicators of floor damaged depth, we use 30 sets of measured data for training model and forecasting. The results show that average relative error is 12.5%, average absolute error is 0.986 m, mean square error is 0.005, and squared correlation coefficient is 0.980 . This prediction model has stronger generalization ability and higher prediction accuracy compared with other prediction models.

    参考文献
    相似文献
    引证文献
引用本文

朱志洁,张宏伟,王春明.基于人工蜂群算法优化支持向量机的 采场底板破坏深度预测[J].重庆大学学报,2015,38(6):37-43.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-01-04
  • 出版日期:
文章二维码