热流固耦合作用下页岩渗透特性实验
作者:
基金项目:

国家重点基础研究发展计划资助项目(2014CB239206);中央高校自然科学类基金重大项目(CDJZR12248801)。


Effects of heat flow fluid-solid coupling on the characteristics of shale permeability
Author:
  • LU Yiyu

    LU Yiyu

    State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;National and Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xiaochuan

    LIU Xiaochuan

    State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;National and Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Jiren

    TANG Jiren

    State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;National and Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Fei

    HUANG Fei

    State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;National and Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨地温对页岩渗流特性的影响规律,按照温度对页岩作用部位的不同,从流体动能、骨架应变、吸附解吸三个方面,分析甲烷内摩擦力对动能的影响、页岩热应力及热膨胀导致应变、甲烷解吸引起基质收缩随温度变化的规律,得出热流固耦合作用下页岩渗流特性。以渝东南酉阳龙马溪组页岩样品为分析对象,进行页岩型岩的温度渗流实验,提出三方面五因素的分析方法:温度增加,流体内摩擦力增大减小了流动速度;粘土矿物与有机质的差异性膨胀产生热应力,压缩了页岩骨架,加之基质热膨胀减小了基质间隙,双重作用使渗流通道减小;基质收缩效应对孔隙裂隙双重结构介质渗透量影响很小。温度升高对页岩渗流特性的主要影响体现为,内摩擦力的减速作用及热应力和热膨胀对渗流通道的压缩作用。

    Abstract:

    To study the influences of geo-temperature on the seepage properties of a shale, we analyzed the temperature-dependent patterns of viscous force change of methane, the formations of a shale by heat stress and expansion, and the matrix shrinkage caused by methane desorption. By using shale samples of Longmaxi Formation in Youyang of Southeast Chongqing, we conducted an experiment on the temperature dependence of the seepage of shale rock. The experiment shows that an increase in temperature leads to an increased viscous force of methane and reduced flow speed. The differences in expansion of clay minerals and organic matters produce thermal stress and compress the shale skeleton, and matrix thermal expansion reduces the substrate gaps, both leading to a decrease in the seepage channels. The matrix shrinkage has very little influence on the infiltration capacity of pores and cracks. The major effects of temperature on the seepage characteristics of shale are the decrease of flow speed of methane due to increased viscous force and compressed seepage channels due to thermal stress and thermal expansion.

    参考文献
    [1] Loucks R G, Reed R M, Jarvie D M, et al. Morphology, genesis and distribution of nano-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [2] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Crystallization Process and Technology, 2007, 46(10): 16-21.
    [3] 王阳,朱炎铭,陈尚斌,等.湘西北下寒武统牛蹄塘组页岩气形成条件分析[J].中国矿业大学学报,2013,42(4):586-594. WANG Yang, ZHU Yanming, CHEN Shangbin, et al. Formation conditions of shale gas in lower Canbrian Niutitang Formation, northwestern Hunan [J]. Journal of China University & Technology,2013,42(4):586-594. (in Chinese)
    [4] 魏明强,段永刚,方全堂,等.页岩气藏孔渗结构特征和渗流机理研究现状[J].油气评价与开采,2011,1(4):73-77 WEI Mingqiang, DUAN Yonggang, FANG Quantang,et al. Current research situation of porosity & permeability characteristics and seepage mechanism of shale gas reservoir[J]. Reservoir Evaluation and Development,2011,1(4):73-77. (in Chinese)
    [5] 李武广,杨胜来,陈峰,等.温度对页岩吸附解吸的敏感性研究[J].矿物岩石,2012,32(2):115-120. LI Wuguang, YANG Shenglai, CHEN Feng, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature[J]. Mineral Petrol, 2012,32(2):115-120. (in Chinese)
    [6] 汪吉林,刘桂建,王维忠,等.川东南龙马溪组页岩孔裂隙及渗透性特征[J].煤炭学报,2013,38(5):773-777. WANG Jilin,LIU Guijian,WANG Weizhong, et al. Characteristics of pore-fissure and permeability of shale in the Longmaxi Formation in southeastern Sichuan Basin [J]. Journal of China Coal Society, 2013,38(5):773-777. (in Chinese)
    [7] Zelenev A S,Zhou H,Ellena L, et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations[C]//SPE International Symposium and Exhibition on Formation Damage Control, February 10-12, 2010, Lafayette, Louisiana, USA. [S.l.]: Society of Petroleum Engineers, 2010.
    [8] 郭为,熊伟,高树生,等.页岩气等温吸附/解吸特征[J].中南大学学报,2013,44(7): 2836-2840. GUO Wei, XIONG Wei, GAO Shusheng, et al. Isothermal adsorption/desorption characteristics of shale gas[J]. Journal of Central South University, 2013,44(7):2836-2840. (in Chinese)
    [9] 殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社,2007:147-155. YIN Zongze. Principles of geotechnique[M]. Beijing: China Water & Power Press, 2007: 147-155. (in Chinese)
    [10] 李道伦,卢德唐,王磊,等.有效渗透率与绝对渗透率的差异性分析[J].油气井测试, 2013,22(1):1-3. LI Daolun,LU Detang,WANG Lei, et al. Difference analysis between effective permeability and absolute permeability[J]. Well Testing, 2013, 22(1): 1-3. (in Chinese)
    [11] 毛根海,邵卫云,张燕. 应用流体力学[M]. 北京: 高等教育出版社,2006: 9-15. MAO Genghai, SHAO Weiyun, ZHANG Yan. Applied hydromechanics[M]. Beijing: Higher Education Press, 2006: 9-15. (in Chinese)
    [12] 李维特,黄保海,毕仲波.热应力理论及应用[M].北京: 中国电力出版社,2004:59-67. LI Weite, HUANG Baohai, BI Zhongbo. Thermal stress and its application[M]. Beijing: China Electricity Power Press, 2004: 59-67. (in Chinese)
    [13] 郝振良,马捷,王明育.热应力作用下有效压力对多孔介质渗透系数的影响[J].水动力学研究与进展,2003,18(6):792-796. HAO Zhenliang,MA Jie,WANG Mingyu. Influence of effective stress on the coefficient of permeability of porous medium under thermal stress[J]. Journal of Hydrodynamics, 2003,18(6): 792-796. (in Chinese)
    [14] 刘峰. 多孔介质热流固耦合的有限元分析[D].唐山: 河北理工大学,2010. LIU Feng. Finite element analysis of porous media on thermal fluid-structural interation[D]. Tangshan: Hebei Polytechnic University, 2010. (in Chinese)
    [15] 陈晓立. 从等温线吸附分支计算固体中间隙孔径及吸附层厚度[J]. 中国纺织大学学报, 1997, 23(2): 88-93. CHEN Xiaoli. Calculations of mesopore radii and adsorbed layer thickness from the adsorption branch of a nitrogen sorption isotherm[J]. Journal of China Textile University, 1997, 23(2):88-93. (in Chinese)
    [16] 崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展, 2012,27(12):1319-1325. CUI Jingwei,ZOU Caineng,ZHU Rukai,et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012,27(12):1319-1325. (in Chinese)
    [17] 张卫东,郭敏,姜在兴.页岩气评价指标与方法[J].天然气地球科学, 2011,22(6):1093-1099. ZHANG Weidong,GUO Min,JIANG Zaixing. Parameters and method for shale gas reservoir evaluation[J]. Natural Gas Geoscience, 2011,22(6):1093-1099. (in Chinese)
    [18] 孔祥言.高等渗流力学[M]. 合肥: 中国科技大学出版社,1999:334-349. KONG Xiangyan. Advanced mechanics of fluids in porous media[M]. Hefei: University of Science and Technology of China Press, 1999: 334-349. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢义玉,刘小川,汤积仁,黄飞.热流固耦合作用下页岩渗透特性实验[J].重庆大学学报,2016,39(1):65-71.

复制
分享
文章指标
  • 点击次数:1515
  • 下载次数: 0
  • HTML阅读次数: 428
  • 引用次数: 0
历史
  • 收稿日期:2015-07-09
  • 在线发布日期: 2016-05-06
文章二维码