三维谱特征下的汽车尾气评估方法
作者:
基金项目:

国家自然科学基金资助项目(61403053);重庆市科技人才培养计划资助项目(cstc2013kjrc-qnrc40005);重庆市教委科学技术研究项目(KJ1400404)。


An assessment method for automobile exhaust based on three-dimensional spectrogram features
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对汽车尾气排放的非线性、时变性问题,提出一种三维谱特征下的汽车尾气评估方法。该方法利用频谱分析的原理对汽车尾气进行时频转换,得到尾气的三维谱特征。这些三维谱特征作为输入被提交给径向基神经网络,在K均值聚类算法的驱动下,径向基神经网络完成训练与测试,实现对三维谱特征的分类,从而评估相应的汽车尾气排放水平。数值实验结果表明,提出的汽车尾气评估方法具有较高的准确性。

    Abstract:

    We present an assessment method of automobile exhaust using three-dimensional spectrogram features to solve the nonlinear and time-varying problems of automobile exhaust emissions. The method takes advantage of spectral analysis to obtain the three-dimensional spectrogram features of automobile exhaust. These three-dimensional spectrogram features, being considered as the input variables, are fed to radial basis function neural network (RBFNN) adapting the K-means algorithm. After completing the training of RBFNN, the three-dimensional spectrograms, being unseen by the network before, are fed to the well-trained network for testing, which achieves the assessment level of automobile exhaust via the classification of three-dimensional spectrogram features. The numerical experiments indicate that the proposed method has a high accuracy.

    参考文献
    [1] Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
    [2] 郝文良,王程,田丽伟,等.基于单片机的汽车尾气检测系统[J]. 微型机与应用,2014,33(17):98-102. HAO Wenliang, WANG Cheng, TIAN Liwei, et al. Automobile exhaust remote testing system based on MSP430 single chip microcomputer[J]. Microcomputer & its Applications, 2014, 33(17): 98-102. (in Chinese)
    [3] 李海涛,史爱松. 基于IC卡的汽车尾气排放检测数据管理信息系统的设计与实现[J]. 计算机工程与科学,2010,31(1):156-158. LI Haitao, SHI Aisong. Design and implementation of an automobile exhaust emission inspecting data management information system based on IC cards[J]. Computer Engineering and Science, 2010, 31(1): 156-158. (in Chinese)
    [4] Wang Q, Song K, Guo T. Portable vehicular electronic nose system for detection of automobile exhaust[C]//2010 IEEE Vehicle Power and Propulsion Conference. [S.L.]: IEEE, 2010: 1-5.
    [5] Yamada H, Misawa K, Suzuki D, et al. Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2895-2902.
    [6] Park J, Sandberg I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257.
    [7] Dutta T. Dynamic time warping based approach to text-dependent speaker identification using spectrograms[C]//2008 Congress on Image and Signal Processing. May 27-30, 2008, Sanya, China. DC, USA: IEEE, 2008, 2 :354-360.
    [8] Ajmera P K, Jadhav D V, Holambe R S. Text-independent speaker identification using Radon and discrete cosine transforms based features from speech spectrogram[J]. Pattern Recognition, 2011, 44(10/11): 2749-2759.
    [9] 师彪,李郁侠,于新花,等. 基于改进粒子群-径向基神经网络模型的短期电力负荷预测[J]. 电网技术,2009,33(17):180-184. SHI Biao, LI Yuxia, YU Xinhua, et al. Short-term load forecasting based on modified particle swarm optimization and radial basis function neural network model[J]. Power System Technology, 2009, 33(17): 180-184. (in Chinese)
    [10] Chi T, Shamma S A. Spectrum restoration from multiscale auditory phase singularities by generalized projections[J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(4): 1179-1192.
    [11] 王孔森, 盛戈皞, 孙旭日, 等. 基于径向 基神经网络的输电线路动态容量在线预测[J]. 电网技术,2013,37(6):1719-1725. WANG Kongsen, SHENG Gehao, SUN Xuri, et al. Online prediction of transmission dynamic line rating based on radial basis function neural network[J]. Power System Technology, 2013, 37(6): 1719-1725. (in Chinese)
    [12] 谭琨,杜培军. 基于径向基函数神经网络的高光谱遥感图像分类[J]. 光谱学与光谱分析,2008,28(9):2009-2013. TAN Kun, DU Peijun. Hyperspectral remote sensing image classification based on radical basis function neural network[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2009-2013. (in Chinese)
    [13] 赵磊, 贾振红, 覃锡忠, 等. 基于k均值和量子遗传算法的RBF网络优化[J]. 计算机工程,2011,37(10):152-153. ZHAO Lei, JIA Zhenhong, QIN Xizhong, et al. RBF network optimization based on k-means and quantum genetic algorithm[J]. Computer Engineering, 2011, 37(10): 152-153. (in Chinese)
    [14] 谢娟英,蒋帅,王春霞,等. 一种改进的全局K-均值聚类算法[J]. 陕西师范大学学报(自然科学版),2010,38(2):18-22. XIE Juanying, JIANG Shuai, WANG Chunxia, et al. An improved global K-means clustering algorithm[J]. Journal of shanxi normal university: natural science edition, 2010, 38(2): 18-22. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗德超,刘国平,刘俊,向飞,袁泉,张顺星.三维谱特征下的汽车尾气评估方法[J].重庆大学学报,2016,39(1):120-126.

复制
分享
文章指标
  • 点击次数:1061
  • 下载次数: 0
  • HTML阅读次数: 437
  • 引用次数: 0
历史
  • 收稿日期:2015-09-10
  • 在线发布日期: 2016-05-06
文章二维码