传递功率对行星齿轮传动系分岔特性的影响规律
作者:
基金项目:

国家自然科学基金资助项目(51475226,51305196);安徽省教育厅自然科学重点项目(KJ2015A179)。


Bifurcation characteristics of a nonlinear planetary gear train changing with power
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对行星齿轮减速器工作过程中传递功率的频繁变化容易导致其运动状态发生突变的问题,探讨行星齿轮传动系统随传递功率的分岔特性。基于2K-H型行星齿轮传动系统纯扭转非线性动力学模型,采用CPNF(continuous Poincaré-Newton-Floquet)方法研究了传递功率对行星齿轮传动系统周期运动稳定性的局部精细分岔规律,运用直接数值积分的方法绘制了系统随功率的全局分岔图,并对两种仿真结果进行了对比。结果发现,在某些参数组合下,行星齿轮传动系统会共存几个稳定或不稳定的周期轨道;当功率在196~220 kW范围内,随着功率值的逐渐增大,行星齿轮传动系统的各种形态的周期轨道均是通过倍周期倒分岔的途径在相应功率分岔点处发生稳定性突变的;在轻载工况下(传递小功率),行星齿轮非线性系统容易呈现混沌运动状态。

    Abstract:

    As the motion state of a planetary gear reducer is easy to bifurcate when the transmitted power changes, a study on the bifurcation characteristics of a planetary gear train changing with the transmitted power is explored in this paper. The local bifurcation characteristics were studied with CPNF(continuous Poincaré-Newton-Floquet) method on the basis of the nonlinear torsional vibration model of 2K-H planetary gear train. As a comparison, the global bifurcation diagram changing with power was calculated by using the method of numerical integration. The comparison results reveal that a nonlinear planetary gear train with certain parameters may have several coexisting periodic trajectories, some of them may be stable and some may be unstable. As the power gradually increases in the range of 196~220 kW, the stable asymptotic stable periodic trajectory may change into chaos in the way of inverse period doubling bifurcation. And chaos is easy to appear when the planetary gear train is under light load condition.

    参考文献
    [1] 陈兵奎, 易文翠, 钟晖, 等. 线面共轭啮合原理及齿面构建方法[J].机械工程学报, 2012, 48(19):17-22. CHEN Bingkui, YI Wencui, ZHONG Hui, et al. Theory of curve-surface conjugated and method of teeth surfaces constructed[J]. Journal of Mechanical Engineering, 2012, 48(19):17-22. (in Chinese)
    [2] 王时龙, 祁鹏, 周杰, 等. 数控滚齿机热变形误差分析与补偿新方法[J].重庆大学学报, 2011, 34(3):13-17. WANG Shilong, QI Peng, ZHOU Jie, et al. Thermal deformation error analysis anf a novel compensation method for NC gear hobbing machine tools[J]. Journal of Chongqing University, 2011, 34(3):13-17. (in Chinese)
    [3] Montestruc A N. Influence of planet pin stiffness on load sharing in planetary gear drives[J]. Journal of Mechanical Design, 2010, 133(1):788-796.
    [4] CHEN Zaigang, SHAO Yimin. Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack[J]. Mechanism and Machine Theory, 2013, 62:63-74.
    [5] CHEN Zaigang, SHAO Yimin. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis, 2011,18(8):2149-2164.
    [6] 李同杰, 朱如鹏, 鲍和云, 等. 行星齿轮系扭转非线性振动建模与运动分岔特性研究[J].机械工程学报, 2011, 47(21):76-83. LI Tongjie, ZHU Rupeng, BAO Heyun, et al. Nonlinear torsional vibration modeling and bifurcation characteristic study of a planetary gear train[J]. Journal of Mechanical Engineering, 2011, 47(21):76-83. (in Chinese)
    [7] SUN Tao, HU Haiyan. Nonlinear Dynamics of a Planetary Gear System with Multiple Clearances[J]. Mechanism and Machine Theory, 2003, 38(12):1371-1390.
    [8] 李同杰, 朱如鹏, 鲍和云, 等. 行星齿轮传动系的周期运动及其稳定性[J]. 振动工程学报, 2013,26(6):815-822. LI Tongjie, ZHU Rupeng, BAO Heyun, et al. Coexisting periodic solutions and their stability of a nonlinear planetary gear train[J]. Journal of Vibration Engineering, 2013, 26(6):815-822.(in Chinese)
    [9] SHAO Yimin, CHEN Zaigang. Dynamic features of planetary gear set with tooth plasticinclination deformation due to tooth root crack[J]. Nonlinear Dynamics, 2013, 74(4):1253-1266.
    [10] LI Tongjie, ZHU Rupeng, BAO Heyun. Study on dynamic load sharing behavior of two-stage planetary gear train based on a nonlinear vibration model[J]. Applied mechanics and Materials, 2011, 86:611-614.
    [11] Parker R G, Wu X H.Vibration modes of planetary gears with unequally spaced planets and an elastic ring gear[J]. Journal of Sound and Vibration, 2010, 329(11):2265-2275.
    [12] Singh A. Load sharing behavior in epicyclic gears:Physical explanation and generalized formulation[J]. Mechanism and Machine Theory, 2010, 45(3):511-530.
    [13] 虞烈, 刘恒. 轴承转子系统动力学[M]. 西安:西安交通大学出版, 2001. YU Lie, LIU Heng. Dynamics of bearing-rotor system[M]. Xi'an:Xi'an Jiaotong University Press, 2001. (in Chinese)
    [14] Han Qingkai. Periodic motion stability of a dual-disk rotor system with rub-impact at fixed limiter[J]. Vibro-Impact Dynamics of Ocean System and Related Problems, 2009, 44:105-109.
    [15] 张家忠.非线性动力系统的运动稳定性、分岔理论及其应用[M].西安:西安交通大学出版社,2010. ZHANG Jiazhong.Motion stability, bifurcation theory and its application of nonlinear dynamical systems[M]. Xi'an:Xi'an Jiao Tong University Press, 2010. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李同杰,靳广虎,鲍和云,朱如鹏.传递功率对行星齿轮传动系分岔特性的影响规律[J].重庆大学学报,2016,39(2):1-9.

复制
分享
文章指标
  • 点击次数:1411
  • 下载次数: 1005
  • HTML阅读次数: 387
  • 引用次数: 0
历史
  • 收稿日期:2015-11-12
  • 在线发布日期: 2016-05-16
文章二维码