面向刚度曲线的汽车前保险杠缓冲块优化设计
作者:
基金项目:

中央高校基本科研业务费科研专项(CDJZR14115501)。


The optimal design of the bumper absorber based on stiffness curve
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    汽车前端结构刚度的合理设计可以有效改善行人保护性能,以刚度曲线为目标,利用结构优化方法对保险杠缓冲块进行了结构优化设计。对某乘用车前保险杠进行冲击实验,建立前保险杠与刚性柱碰撞的有限元模型,对比仿真和实验得到的刚度曲线,验证了有限元模型的准确性。为了使保险杠区域的刚度曲线达到理想刚度曲线的要求,以缓冲块的材料刚度和几何形状作为设计变量,将保险杠刚度曲线与理想刚度曲线所围成的面积最小化作为目标,采用自适应响应面法进行优化求解。结果表明,优化后的材料刚度和几何形状所对应的保险杠刚度曲线与理想刚度曲线比较接近,能够满足行人保护的要求。

    Abstract:

    The reasonable design of the vehicle front-end structure stiffness can effectively improve the performance of pedestrian protection. The optimal design of the bumper absorber was completed by structure optimization, and the stiffness curve was the object. The crash test of the bumper of a passenger car was conducted. Meanwhile the finite element model of the collision between the bumper and rigid pillar was established. The accuracy of the finite element model was verified through comparison between the simulation and test results. In order to make the stiffness curve of the bumper area be close to the ideal stiffness curve, the design variables were the geometric shape and the material stiffness of the absorber. The object was to minimize the area between the ideal stiffness curve and the bumper stiffness curve. Adaptive response surface method was used to optimize the absorber. The result shows that the bumper stiffness curve of the optimized material stiffness and geometric shape is consistent with the ideal stiffness curve and meets the requirement of the pedestrian protection.

    参考文献
    [1] Du H L, Huang S L, Zhang J H, et al. A study on injury of pedestrian leg & knee during impaction to bumper[C]//Proceedings of the 3rd International Symposium on Safety Science and Technology, October 10-13, 2002, Tai An, China.[S.l.]:Progress in Safety Science and Technology Series,2002:1483-1487.
    [2] Kulkarni S, Mana D. Design of light-weight vehicle front end structure for pedestrian protection[C]//SAE 2012 World Congress, Detroit, 2012, SAE Technical Paper, 2012-01-1176, 2012.
    [3] Emmanuel G, Valerie M, Claude L. Car front end module structure development regarding pedestrian protection and other mechanical constraints[C]//SAE 2001 World Congress, Detroit, 2001, SAE2001-01-0761.http://digitallibrary.sae.org/content/2001-01-0761.
    [4] 苗强,高卫民,王大志,等.概念设计与FE仿真评估在行人腿部保护车身设计中的应用[J].汽车设计,2009(5):11-14. MIAO Qiang, GAO Weimin, WANG Dazhi, et al. The application of concept design and FE simulation assessment in the design of pedestrian leg protection[J]. Automobile Technology, 2009(5):11-14. (in Chinese)
    [5] Liu W, Cheng X, Shan Y, et al. Improvement of bumper structure for pedestrian lower leg protection based on Euro-NCAP[C]//2011 International Conference on Mechatronic Science, Electric Engineering and Computer(MEC), August 19-22, 2011, Jilin, China.[S.l.]:IEEE, 2011:648-652.
    [6] Sun J X, Liu M Y, Liu H X, et al. Orthogonal design analysis of steel energy absorber and lower bumper system based on pedestrian protection lower leg impact[C]//2012 Third International Conference on Digital Manufacturing and Automation, July 31-August 2012, Guilin, China.[S.l.]:IEEE Computer Society, 2012:590-593.
    [7] Sofi F, Kulkarni S, Haarda M, et al. A novel energy absorber design technique for an idealized force-deformation performance[C]//SAE World Congress & Exhibition, Detroit, 2008, SAE 2008-01-0184.http://papers.sae.org/2008-01-0184/.
    [8] 徐中明,徐小飞,万鑫明,等.铝合金保险杠防撞梁结构优化设计[J].机械工程学报,2013,49(8):136-142. XU Zhongming, XU Xiaofei, WAN Xinming, et al. Structure optimal design of aluminum alloy bumper anticollision beam[J]. Journal of Mechanical Engineering, 2013, 49(8):136-142. (in Chinese)
    [9] 朱敏,姬林,叶辉.考虑侧碰的汽车B柱加强板材料性能梯度优化[J].吉林大学学报:工学版,2011,41(5):1210-1215. ZHU Min, JI Lin, YE Hui. Optimization of yield stress distribution in B pillar reinforcement panel regarding side crashworthiness[J]. Journal of Jilin University:Engineering and Technology Edition, 2011, 41(5):1210-1215. (in Chinese)
    [10] 黄俊,夏勇,周青. 基于汽车前端刚度分析的降低小腿加速度快速设计方法[J].汽车工程,2012,34(8):679-687. HUANG Jun, XIA Yong, ZHOU Qing. A rapid design method for reducing tibia accelemtion based on the analysis on vehicle front-end stiffhess[J]. Automotive Engineering, 2012, 34(8):679-687. (in Chinese)
    [11] Nagwanshi D, Mana D, Allen K, et al. Diagnosing vehicle aggressiveness for pedestrian leg impact and development of efficient front end energy management systems[C]//SAE 2010 World Congress & Exhibition, Detroit, 2010, SAE 2010-01-1168.http://papers.sae.org/2010-01-1168/.
    [12] Bhagat M, Chalipat S, Ranade A. Influence of vehicle front end design on pedestrian lower leg performance for SUV class vehicle[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1):12-21.
    [13] 吴斌, 朱西产, 王大志, 等. 乘用车与行人碰撞腿部保护设计要素研究汽车技术[J]. 汽车技术, 2010(11):33-37. WU Bin, ZHU Xichan, WANG Dazhi, et al. Research on design elements of vehicle for pedestrian leg protection in collision[J]. Automobile Technology, 2010(11):33-37. (in Chinese)
    [14] Droste A, Naughton P, Cate P. The virtual stiffness profile:a design methodology for pedestrian safety[C]//International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress,[S.l.]:SAE Technical, 2002:1-9.
    [15] Naughton P, Cate P. An approach to front-end system design for pedestrian safety[C]//SAE 2001 World Congress, Detroit, 2001. SAE 2001-01-0353.http://papers.sae.org/2001-01-0353/.
    [16] 韦东来,倪瑞阳,金叶俊,等. 汽车行人保护小腿碰撞的概念分析与优化[J]. 装备制造技术, 2013(8):1-3. WEI Donglai, NI Ruiyang, JIN Yejun, et al. Concept analysis and optimization of lower leg impact for car pedestrian protection[J]. Equipment Manufacturing Technology, 2013(8):1-3. (in Chinese)
    相似文献
    引证文献
引用本文

张志飞,李勋,徐中明,贺岩松.面向刚度曲线的汽车前保险杠缓冲块优化设计[J].重庆大学学报,2016,39(3):21-27.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-05
  • 在线发布日期: 2016-07-05
文章二维码