高MgO镍铁渣作为活性混合材使用的可行性分析
作者:

Feasibility of using ferronickel slag containing high MgO composition as an active mixed material
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    中国镍铁渣排放量很大,但目前尚未找到大量利用的途径。笔者在分析镍铁渣组成、性能的基础上,对镍铁渣作为活性混合材使用的可能性及效果进行了研究。结果表明:镍铁渣中非晶体矿物的含量为88.1%,含量高达27.07%的MgO主要以顽辉石和镁铁橄榄石两种晶体矿物形式存在。镍铁渣的比表面积影响其活性和在水泥中的掺量。作为活性混合材,镍铁渣比表面积需不低于454.6 m2/kg。比表面积越大,活性指数越大,掺量越大。镍铁渣水泥的压蒸安定性合格,即使在水泥中掺入50%比表面积842.9 m2/kg的镍铁渣,水泥的压蒸膨胀率仅为0.11%,大大低于0.5%的GB750-1992要求,由此证明镍铁渣不会因为MgO含量高而影响其作为活性混合材的使用。

    Abstract:

    A large amount of ferronickel slag containing high MgO composition is discharged every year in China, but it has not found an efficient method to utilize the slag so far. We investigated the feasibility and the effect of using ferronickel slag containing high MgO composition as an active mixed material on the basis of analyzing its composition and performance. The results show that the content of amorphous mineral in the slag is 88.1%. The content of MgO reaches 27.07% and it mainly exists as enstatite and hortonolite. The slag's activity and its dosage used in the cement are affected by its specific surface area. As an active mixing material, its specific surface area should be no less than 454.6 m2/kg. The bigger the specific surface area of the slag is, the higher the active index is, and the larger the dosage in the cement is. The autoclave soundness of the cement mixed with high-MgO ferronickel slag is qualified. Even if the mixing dosage of the slag with specific surface area of 842.9 m2/kg is up to 50%, the autoclave expansion rate of the new cement is only 0.11%, which is significantly lower than 0.5% as required by GB750-92. Therefore, ferronickel slag containing high MgO composition can be used as an active mixed material.

    参考文献
    [1] 王晓磊,刘晓鹏.利用高炉渣制造岩矿棉工程化技术研究[J]. 新技术新工艺, 2014(1):110-111. WANG Xiaolei, LIU Xiaopeng. Research on technology of manufacturing rockwool engineering using blast furnace slag[J]. The New Technology and New Process, 2014(1):110-111.(in Chinese)
    [2] Kockal N U, Ozturan T. Effects of light weight fly ash aggregate properties on the behavior of lightweight concretes[J]. Journal of Hazardous Materials, 2010, 179(1-3):954-965.
    [3] Shakir A A, Naganathan S, Mustapha K N. Properties of bricks made using fly ash, quarry dust and billet scale[J]. Construction and Building Materials, 2013, 41:131-138.
    [4] 沈阳,刘红梅,杨恒亮. 粉煤灰陶粒保温砌块的制备工艺及应用现状[J]. 新型建筑材料,2012, 39(10):24-27. SHEN Yang, LIU Hongmei, YANG Hengliang. Productive technology and application of fly-ash ceramsite insulation block[J]. New Building Materials, 2012, 39(10):24-27. (in Chinese)
    [5] 马明生, 裴忠冶. 镍铁冶炼渣资源化利用技术进展及展望[J]. 中国有色冶金, 2014, 43(6):64-70. MA Mingsheng, PEI Zhongye. Development and prospect of resource utilization technology of ferronickel smelting slag[J]. China Nonferrous Metallurgy, 2014, 43(6):65-70. (in Chinese)
    [6] 孔令军,赵祥麟,刘广龙. 红土镍矿冶炼镍铁废渣环境安全性能研究[J]. 铜业工程,2014(1):61-64. KONG Lingjun ZHAO Xiangling LIU Guanglong. Research on environment safety of the laterite nickel ore smelting ferro-nickel slag[J]. Copper Engineering, 2014(1):61-64. (in Chinese)
    [7] 石光,刘箴,聂文海,等.辊磨在电炉镍铁渣制备镍铁微粉系统中的应用[J]. 水泥技术,2014(4):37-40. SHI Guang, LIU Jian, NIE Wenhai, et al. Application of grinding roller in the system of nickel powder preparation from nickel-iron slag using electric furnace[J]. Cement Technology, 2014(4):37-40. (in Chinese)
    [8] 张文军,李宇,李宏,等.利用镍铁渣及粉煤灰制备CMSA系微晶玻璃的研究[J]. 硅酸盐通报, 2014, 33(12):3359-3365. ZHANG Wenjun, LI Yu, LI Hong, et al. Research of preparing CMSA glass-ceramics with the nickel iron slag and fly ash[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12):3359-3365. (in Chinese)
    [9] 万朝均, 孟立. 镍铁合金矿热炉渣辅助胶凝材料的制备与性能[J]. 重庆大学学报, 2010, 33(1):119-123. WAN Caojun, MENG Li. Preparation of the supplementary cementitious material of ferronickel submerged arc furnace slag and its properties[J]. Journal of Chongqing University, 2010, 33(1):119-123. (in Chinese)
    [10] Komnitsas K, Zaharaki D, Perdikatsis V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers[J]. Journal of Hazardous Materials, 2009, 161(2/3):760-768.
    [11] Lemonis N, Tsakiridis P E, Katsiotis N S, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction and Building Materials, 2015, 81(15):130-139.
    [12] Sakkas K, Panias D, Nomikos P P, et al. Potassium based geopolymer for passive fire protection of concrete tunnels linings[J]. Tunnelling and Underground Space Technology, 2014, 43:148-156.
    [13] Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers[J]. Applied Clay Science, 2013, 73:103-109.
    [14] 段光福, 刘万超, 陈湘清, 等. 江西某红土镍矿冶炼炉渣作水泥混合材[J]. 金属矿山, 2012(11):159-162. DUAN Guangfu, LIU Wanchao, CHEN Xiangqing, et al. The laterite nickel ore smelting slag used as cement admixture[J]. Metal Mine, 2012(11):159-162. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨慧芬,苑修星,王亚运,谭海伟,孟家乐.高MgO镍铁渣作为活性混合材使用的可行性分析[J].重庆大学学报,2016,39(3):51-57.

复制
分享
文章指标
  • 点击次数:1021
  • 下载次数: 1352
  • HTML阅读次数: 441
  • 引用次数: 0
历史
  • 收稿日期:2016-01-05
  • 在线发布日期: 2016-07-05
文章二维码