氢还原竖炉的模拟分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50704040);重庆市自然科学基金资助项目(CSTC2009BB4197)。


Simulation analysis on hydrogen reduction shaft furnace
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用一组物料、热量守衡式及其他有关约束关系,建立了氢还原竖炉模拟模型,可定量考察消耗量、生成量和氮气、CO兑入成分、DRI金属化率、入炉煤气温度等的关系。模拟结果表明:兑入CO可使入炉煤气量从纯氢还原的1650 N·m3左右下降到1200 N·m3左右;当CO和H2的体积之比V(CO)/V(H2)约为0.6时,氮气兑入量约为0,竖炉能量利用最佳;当V(CO)/V(H2)体积比为0.3时,最佳氮气兑入成分约为11%;纯氢还原最佳氮气兑入成分约为25%;兑入氮气可以减少入炉氢气的量,但不能减少入炉气体的总量。对氢还原竖炉模拟结果可为其工艺设计、操作和节能等提供参考信息。

    Abstract:

    A mathematical model for ore reduction mainly by H2 in shaft furnace was established by a set of conservation equations of materials and heat, and other constraint conditions. All consumptions and productions could be calculated if the composition of N2, the value of V(CO)/V(H2), the metallization ratio of DRI, the temperature of input gas, etc. were given. It shows that the input gas can be reduced from 1650 N·3 for H2 reduction to 1200 N·m3 by CO addition. When the volume ration of CO to H2 V(CO)/V(H2)was 0.6, the energy utilization ratio of shaft furnace was maximum without N2 addition; when V(CO)/V(H2)=0.3, the optimum composition of N2 was 11%; when V(CO)/V(H2)=0, the optimum composition of N2 was 25%. The N2 addition may result in H2 consumption, but could not reduce the total input gas. The simulation will provide reference to process design, operation and energy saving.

    参考文献
    相似文献
    引证文献
引用本文

王成善,时艳文,李丹丹,冯鹏飞,穆小静.氢还原竖炉的模拟分析[J].重庆大学学报,2016,39(4):57-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-08-04
  • 出版日期:
文章二维码