联想神经网络的风速序列预测分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市科委资助项目(cstc2013kjrc-qnrc40001,cstc2013jcyjA80013)。


Wind speed time series prediction based on associative network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高风速序列预测的可靠性,针对具有混沌特性的风速序列,构造了一种用于风速序列预测的联想网络。以风速序列的波动性作为相似性测度准则,构造联想网络的存储样本模式,根据存储模式中蕴含的关联信息完成网络的无监督学习,从而完成具有自相似性的风速序列的一步或多步预测分析。与传统前向型神经网络相比,该网络预测机理明确,预测结果唯一,且可一次给出多步预测结果。仿真实验结果表明,该网络的具有良好预测性能,适用于风速序列的动态预测。

    Abstract:

    In order to improve the reliability of wind speed series prediction, a new associative network was constructed to predict the wind speed series with chaotic characteristics. Stored sample patterns were constructed according to the similarity measure of the volatile of the wind speed series. Utilizing the correlation information contained in the stored sample patterns, the network adopts an unsupervised learning algorithm to complete the weight training. One step or multi-step prediction of the wind speed series which have self-similarity can be completed by the associative network. Compared with the conventional forward neural network, the prediction mechanism of the associative prediction network is explicit, and the prediction result is uniqueness. The network can also give one step or multi-step prediction results simultaneously in once calculation. Simulation results show that the associative network has good prediction performance, and can be applied to predict dynamically the wind speed series.

    参考文献
    相似文献
    引证文献
引用本文

杨雨浓,修春波.联想神经网络的风速序列预测分析[J].重庆大学学报,2016,39(4):139-146.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-08-04
  • 出版日期:
文章二维码