刚性陶瓷瓦热防护系统概率设计分析方法
作者:
基金项目:

国家自然科学基金资助项目(11572353,11502037,51572298,11502306)。


Investigation of probabilistic design method for ceramic tile thermal protection system
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对高超声速飞行器中广泛应用的陶瓷瓦热防护系统,结合有限元法和蒙特卡洛模拟建立了其概率热分析系统,提出了刚性陶瓷瓦热防护系统尺寸概率设计方法。建立了刚性陶瓷瓦热防护系统的二维有限元模型,考虑了热传导系数、比热容和表面辐射率等材料属性参数以及热防护系统各层厚度的不确定性,得到系统温度场的概率分布特性和系统热防护性能对各参数的灵敏度,并对系统的热可靠性进行了评估。算例表明:文中提出的方法对热防护系统设计过程中合理确定陶瓷瓦厚度和在保证系统性能的前提下有效减轻重量具有指导价值。

    Abstract:

    A probabilistic sizing tool for rigid ceramic tiles thermal protection system (TPS) for hypersonic flight vehicles was proposed based on finite element and Monte Carlo methods. A two-dimensional probabilistic finite element model was developed, in which the uncertainties of thermal conductivities, specific heat capacities, emissivity and the thickness of TPS were considered. The temperature distributions of TPS were obtained, and the sensitivities of the input random parameters were also investigated. Based on the statistical results, the thermal reliability of ceramic tile TPS was evaluated. The numerical example indicates that the thermal reliability can be improved by increasing the thickness of ceramic tile or strictly controlling its manufacture tolerance. The proposed method could be helpful to design highly reliable TPS with minimum weight.

    参考文献
    [1] 张宗美.航天故障手册[M].北京:宇航出版社,1994.ZHANG Zongmei.Handbook of failures of launch vehicles spacecrafts and missiles[M].Beijing:China Astronautic Publishing House,1994.(in Chinese)
    [2] Capece A M,Kinmonth R,Chumakov M,et al.Failure analysis of a thermal tile on the space shuttle Columbia[J].Journal of Failure Analysis and Prevention,2006,6(1):55-60.
    [3] Walker J D.From columbia to discovery:Understanding the impact threat to the space shuttle[J].International Journal of Impact Engineering,2009,36(2):303-317.
    [4] 王康太,冯坚,姜勇刚,等.陶瓷纤维刚性隔热瓦研究进展[J].材料导报,2011,25(23):35-39.WANG Kangtai,FENG Jian,JIANG Yonggang,et al.Development of ceramic fiber rigid insulation tiles[J].Materials Review,2011,25(23):35-39.(in Chinese)
    [5] 任青梅,成竹.可重复使用热防护系统试验验证技术概述[J].强度与环境,2011,37(6):55-62.REN Qingmei,CHENG Zhu.Development of verification test technology for reusable thermal protection systems[J].Structure&Environment Engineering,2011,37(6):55-62.(in Chinese)
    [6] 杨海龙,周洁洁,姚先周,等.刚性隔热瓦重复使用性评价研究[J].宇航材料工艺,2014,44(5):61-64.YANG Hailong,ZHOU Jiejie,YAO Xianzhou,et al.Evaluation on reusability of ceramic fiber rigid insulation tiles[J].Aerospace Materials&Technology,2014,44(5):61-64.(in Chinese)
    [7] Stewart D A,Leiser D B.Lightweight TUFROC TPS for hypersonic vehicles[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference,2006,Canberra,Australia.[S.l.]:AIAA,2006:1-10.
    [8] 蒋持平,柴慧,严鹏.近空间高超声速飞行器防热隔热与热力耦合研究进展[J].力学与实践,2011,33(1):1-9.JIANG Chiping,CHAI Hui,YAN Peng.Advances in thermal protection of near space hypersonic flying vehicles and related researches of thermo-mechanical coupling[J].Mechanics in Engineering,2011,33(1):1-9.(in Chinese)
    [9] 鲁芹,胡龙飞,罗晓光,等.高超声速飞行器陶瓷复合材料与热结构技术研究进展[J].硅酸盐学报,2013,41(2):251-260.LU Qin,HU Longfei,LUO Xiaoguang,et al.Development of ceramic composite and hot structures for hypersonic vehicles[J].Journal of the Chinese Ceramic Society,2013,41(2):251-260.(in Chinese)
    [10] Wright M J,Bose D,Chen Y K.Probabilistic modeling of aerothermal and thermal protection material response uncertainties[J].AIAA Journal,2007,45(2):399-410.
    [11] Zhao S Y,Zhang B M,Du S Y.Probabilistic modeling of transient heat transfer and assessment of thermal reliability of fibrous insulation under aerodynamic heating conditions[J].International Journal of Thermal Sciences,2009,48(7):1302-1310.
    [12] Green L L.The challenges of credible thermal protection system reliability quantification[C/OL]//The 10th International Planetary Probe Workshop,June,2013,San Jose,CA.[S.l.]:[s.n.],2013[2016-02-20].http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140000149.pdf.
    [13] Dec J A,Mitcheltree R A.Probabilistic design of a Mars sample return earth entry vehicle thermal protection system[C/OL]//40th Aerospace Sciences Meeting&Exhibit,January 14-17,2002,Reno,Nevada.[S.l.]:AIAA,2002[2016-02-20].http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020022116.pdf.
    [14] Howell J R.Monte Carlo treatment of data uncertainties in thermal analysis[J].Journal of Spacecraft and Rockets,1973,10(6):411-414.
    [15] Dec J A,Braun R D.An approximate ablative thermal protection system sizing tool for entry system design[C/OL]//44th AIAA Aerospace Sciences Meeting and Exhibit,January 9-12,2006,Reno,Nevada.[S.l.]:AIAA,2006[2016-02-20].http://arc.aiaa.org/doi/pdf/10.2514/6.2006-780.
    [16] Nakamura T,Fujii K.Probabilistic transient thermal analysis of an atmospheric reentry vehicle structure[J].Aerospace Science and Technology,2006,10(4):346-354.
    [17] Wright M J,Beck R A S,Edquist K T,et al.Sizing and margins assessment of mars science laboratory aeroshell thermal protection system[J].Journal of Spacecraft and Rockets,2014,51(4):1125-1138.
    [18] Mazzaracchio A,Marchetti M.A probabilistic sizing tool and Monte Carlo analysis for entry vehicle ablative thermal protection systems[J].Acta Astronautica,2010,66(5/6):82-835.
    [19] Zhao S Y,Zhang W J,Lin X,et al.Effect of parameters correlation on uncertainty and sensitivity in dynamic thermal analysis of thermal protection blanket in service[J].International Journal of Thermal Sciences,2015,87:158-168.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

屈强,祝文祥,辛健强,姚建尧.刚性陶瓷瓦热防护系统概率设计分析方法[J].重庆大学学报,2016,39(4):154-161.

复制
分享
文章指标
  • 点击次数:1506
  • 下载次数: 1373
  • HTML阅读次数: 897
  • 引用次数: 0
历史
  • 收稿日期:2015-11-15
  • 在线发布日期: 2016-08-04
文章二维码