液黏传动双圆弧油槽摩擦副油膜剪切转矩研究
作者:
基金项目:

国家自然科学基金资助项目(51275039);山西省煤基重点科技攻关资助项目(MJ2014-06);煤矿综采装备山西省重点实验室开放基金资助项目(2014-01);太原理工大学校青年基金资助项目(2014TD038)。


Study on fluid torque by shear stress of double arc oil groove friction pairs in hydro-viscous drive
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    双圆弧油槽摩擦副广泛应用于液黏传动,为了研究油槽结构参数对油膜剪切转矩的影响,对摩擦副间流体的流动特性进行数值模拟,得到了油膜剪切转矩。建立了集流场参数化建模(CAD)、数值模拟(CFX)、试验设计方法(DOE)及响应曲面法(RSM)为一体的油槽参数影响分析平台,分析了油槽深度、油槽宽度和油槽数目对油膜剪切转矩的影响并建立了近似响应曲面模型。搭建转矩性能试验台进行试验验证,结果表明:油膜剪切转矩随着油槽深度、宽度和数目的增大均减小,而油槽宽度对转矩的影响最大,油槽深度影响次之,油槽数目影响最小。通过理论和试验研究,应用CFX数值模拟和建立摩擦副油槽参数影响分析平台实现了CAD、CFX、DOE及RSM等技术的高度融合,可以准确地分析摩擦副油槽参数对油膜剪切转矩的影响。

    Abstract:

    The double arc oil groove friction pairs are widely used in hydro-viscous drive (HVD). In order to study the influence of oil groove parameters on fluid torque by shear stress, the flow characteristics of oil film was carried out by using the software CFX. The shear torque of film was obtained. An analysis platform, which was built to discover the influence of oil groove parameters on shear torque, was designed based on the flow field parametric modeling, numerical stimulation, design of experimental (DOE) and response surface methodology (RSM). The effects of the depth, the width and the number of the oil groove on shear torque were analyzed and an approximate response surface methodology model was then set up. And a test rig of torque performance was set up. The results indicate that the shear torque decreases with the depth, the width and the number of oil grooves increasing. Meanwhile, the influence of width is the most, and that of the number is the smallest. Through both theoretical and experimental study, the effect of oil groove parameters on fluid torque by shear stress could be much more precisely achieve by CFX numerical simulation and the platform which combine the CAD, CFX, DOE and RSM technology.

    参考文献
    [1] 魏宸官, 赵家象. 液体黏性传动技术[M]. 北京: 国防工业出版社, 1996. WEI Chenguan, ZHAO Jiaxiang. Technology of hydro-viscous drive[M]. Beijing: Defence Industry Press, 1996.(in Chinese)
    [2] Cui Hongwei, Yao Shouwen, Yan Qingdong. Mathematical model and experiment validation of fluid torque by shear stress under influence of fluid temperature in hydro-viscous clutch[J]. Chinese Journal of Mechanical Engineering, 2014, 27(1):32-40.
    [3] 魏振华, 侯红伟. 液黏传动摩擦油液压力分布的新算法[J]. 机床与液压, 2014, 42(19): 82-84. WEI Zhenhua, HOU Hongwei. New algorithm of pressure distribution of oil within liquid viscous friction drive[J]. Machine Tool & Hydraulics, 2014, 42(19): 82-84. (in Chinese)
    [4] 张先俊, 谢方伟, 王存堂, 等. 油槽形式对摩擦副温度场影响的数值模拟[J]. 机床与液压, 2015, 43(23): 16-20. ZHANG Xianjun, XIE Fangwei, WANG Cuntang, et al. Simulation study on effects of oil grooves on temperature field of friction pairs[J]. Machine Tool & Hydraulics, 2015, 43(23): 16-20. (in Chinese)
    [5] 崔红伟. 液黏调速离合器转矩特性研究[D]. 北京: 北京理工大学, 2014. CUI Hongwei. Research on the torque characteristic of friction pairs in hydro-viscous clutch[D]. Beijing: Beijing Institute of Technology, 2014. (in Chinese)
    [6] Razzaque M M, Kato T. Effects of a groove on the behavior of a squeeze film between a grooved and a plain rotating annular disk[J]. Journal of Tribology, 1999, 121(4): 808-815.
    [7] Miyagawa M, Ogawa M, Okano Y, et al. Numerical simulation of temperature and torque curve of multidisk wet clutch with radial and circumferential grooves[J]. Tribology Online, 2009, 4(1): 17-21.
    [8] Aphale C R, Schultz W W, Ceccio S L. The influence of grooves on the fully wetted and aerated flow between open clutch plates[J]. Journal of Tribology, 2010, 132(1): 011104.
    [9] Meng Q R, Hou Y F. Effects of friction disc surface groove on speed-regulating start[J]. Industrial Lubrication and Tribology, 2009, 61(6): 325-331.
    [10] Xie Fangwei, Hou Youfu. Oil film hydrodynamic load capacity of hydro-viscous drive with variable viscosity[J]. Industrial Lubrication and Tribology, 2011, 63(3): 210-215.
    [11] Yuan Shihua, Peng Zengxiong, Jing Congbo. Experimental research and mathematical model of drag torque in single-plate wet clutch[J]. Chinese Journal of Mechanical Engineering, 2011, 24(1): 91-97.
    [12] Hu Jibin, Peng Zengxiong, Wei Chao. Experimental research on drag torque for single-plate wet clutch[J]. Journal of Tribology, 2012, 134(1): 97-104.
    [13] Wu W, Xiong Z, Hu J B, et al. Application of CFD to model oil–air flow in a grooved two-disc system[J]. International Journal of Heat and Mass Transfer, 2015, 91: 293-301.
    [14] Iqbal S, Al-Bender F, Pluymers B, et al. Model for Predicing Drag Torque in Open Multi-Disks Wet Clutches[J]. Journal of Fluids Engineering, 2013, 136(2): 122-136.
    [15] 黄家海, 魏建华, 邱敏秀. 液黏调速离合器传动特性分析[J] 浙江大学学报(工学版), 2011, 45(11): 1927-1933. HUANG Jiahai, WEI Jianhua, QIU Minxiu. Investigation on the transmission characteristics of hydroviscous drive[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(11): 1927-1933. (in Chinese)
    [16] 邹波. 车用液力减速器性能预测设计方法研究[D]. 北京: 北京理工大学, 2012. ZOU Bo. Research on brake performance prediction design method of vehicular hydraulic retarder[D]. Beijing: Beijing Institute of Technology, 2012. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔红伟,姚寿文,邓元元.液黏传动双圆弧油槽摩擦副油膜剪切转矩研究[J].重庆大学学报,2016,39(5):1-9.

复制
分享
文章指标
  • 点击次数:1249
  • 下载次数: 1376
  • HTML阅读次数: 876
  • 引用次数: 0
历史
  • 收稿日期:2016-04-17
  • 在线发布日期: 2016-10-31
文章二维码