粉末烧结的计算机模拟方法研究进展
作者:
基金项目:

重庆市自然科学基金资助项目(CSTC2012JJA00009);中央高校基础研究基金资助项目(CDJZR14335501,CDJZR13240077)。


Research progress of computer simulation methodfor particle sintering process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    粉末烧结是多种因素作用下的一系列物理、化学变化的复杂过程,计算机模拟技术为研究复杂烧结过程提供了强有力的工具。笔者总结了近10年来计算机模拟方法在颗粒烧结过程中的应用研究进展,具体综述了相场法、蒙特卡罗法、有限元法、分子动力学法和离散单元法的研究。介绍了不同方法取得的代表性成果,并比较了不同数值方法的优势和劣势。通过总结,使读者对粉末烧结的数值模拟方法有较全面的认识。

    Abstract:

    Sintering is a complex physical and chemical process under the action of many kinds of factors. The computer simulation technology is a powerful tool to study the complicated sintering process. The advances of computer simulation method for particle sintering process in the past ten years were summarized in this paper. The researches on Monte Carlo method, phase field method, finite element method, molecular dynamics method and discrete element method were reviewed respectively, and the representative achievements of each method were introduced. Moreover, the advantages and the disadvantages of each numerical method were given. It provides a comprehensive understanding of simulation method of sintering process.

    参考文献
    [1] 果世驹. 粉末烧结理论[M]. 北京:冶金工业出版社, 2007: 1-42. GUO Shiju. Powder metallurgy sintering theory[M]. Beijing: Metallurgical industry press, 2007: 1-42.(in Chinese)
    [2] German R M. Thermodynamics of sintering. Sintering of advanced materials[M]. Woodhead Publishing, 2010: 4.
    [3] Frenkel Y I. Viscous flow in crystalline solids[J]. Zhurnal Éksperimental'noÏi TeoreticheskoÏ Fiziki(in Russian), 1946, 16(1): 29-38.
    [4] Kuczynski G C. Self-Diffusion in sintering of metallic particles[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1949, 185(2): 169-178.
    [5] Kuczynski G C. Measurement of self-diffusion of silver without radioactive tracers[J]. Journal of Applied Physics, 1950, 21: 632-635.
    [6] Kingery W D, Berg M. Study of initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion[J]. Journal of Applied Physics, 1955, 26(10): 1205-1212.
    [7] Coble R L. Initial sintering of alumina and hematite[J]. Journal of the American Ceramic Society, 1958, 41: 55-62.
    [8] 程远方,果世驹,赖和怡. 烧结理论研究进展—1.烧结单元模型建立方法之比较[J].粉末冶金技术, 1999,17(3): 216-221. CHENG Yuanfang, GUO Shiju, LAI Heyi. Theoretical modelling progress-1.The comparison of the unit model for the first stage of gravity sintering[J]. Powder metallurgy technology, 1999,17(3): 216-221. (in Chinese)
    [9] 程远方,果世驹,赖和怡.烧结理论研究进展—2. 烧结初期多种扩散机制耦合作用的烧结模型[J].粉末冶金技术, 1999,17(4): 257-263. CHENG Yuanfang, GUO Shiju, LAI Heyi. Coupling model of multiple sintering mechanisms for the initial stage sintering[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263. (in Chinese)
    [10] 张道礼, 翁广安, 龚树萍, 等. 钛酸钡系PTCR半导体陶瓷烧结过程的计算机模拟I. 烧结初期的动力学方程及计算机模拟[J]. 功能材料, 2001, 32(6): 635-642. ZHANG Daoli, WENG Guangan, GONG Shuping, et al.Computer simulation of sintering process of BaTiO3-based PTCR ceramics I. The kinetics and simulation of initial stage of sintering[J]. Journal of functional materials, 2001, 32(6): 635-642. (in Chinese)
    [11] Wakai F, Brakke K A. Mechanics of sintering for coupled grain boundary and surface di? usion[J]. Acta Materialia, 2011, 59: 5379-5387.
    [12] Maximenko A L, Olevsky E A. Effective diffusion coeffcients in solid-state sintering[J]. Acta Materialia, 2004, 52: 2953-2963.
    [13] 吴艳青,黄风雷. 粉末热压扩散与应力场耦合的力学模型[J].力学学报,2008, 40(4): 550-556. WU Yanqing, HUANG Fenglei. A powder compaction mechanical model for diffusion coupled with stress field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 550-556. (in Chinese)
    [14] Djohari H, Martinez-herrera J I, Derby J J. Transport mechanisms and densification during sintering: I. Viscous flow versus vacancy diffusion[J]. Chemical Engineering Science, 2009, 64: 3799-3809.
    [15] Djohari H, Derby J J. Transport mechanisms and densification during sintering: II. Grain boundaries[J]. Chemical Engineering Science, 2009, 64: 3810-3816.
    [16] Zhang W, Schneibel J H. The sintering of two particles by surface and grain boundary diffusion-a two-dimensional numerical study[J]. Acta Metallurgica et Materialia, 1995, 43(12): 4377-4386.
    [17] Zhang W, Gladwell I. Sintering of two particles by surface and grain boundary diffusion-a three-dimensional model and a numerical study[J]. Computational Materials Science, 1998, 12: 84-104.
    [18] Klinger L, Rabkin E, Sintering of spherical particles of two immiscible phases controlled by surface and interphase boundary diffusion[J]. Acta Materialia, 2013, 61: 2607-2616.
    [19] 刘广义. ZrB2陶瓷烧结初期蒙特卡罗模拟[D]. 哈尔滨:哈尔滨工业大学,2008. LIU Guangyi.Monte carlo simulation for zirconium diboride ceramics during sintering initial stage[D].Harbin:Harbin technical university,2008. (in Chinese)
    [20] Nichols F A, Mullins W W. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion[J]. Journal of Applied Physics, 1965, 36(6): 1826-1835.
    [21] Qiu F L, Egerton T A, Cooper I L. Monte Carlo simulation of nano-particle sintering[J]. Powder Technology, 2008, 182: 42-50.
    [22] 牛玉. 粉末固相烧结的数值模拟和理论问题研究[D]. 合肥:中国科学技术大学,2013. NIU Yu.Numerical simulation and theoretical research on sSolid-Phase sintering of powders[D].Hefei:University of Science and Technology of China,2013. (in Chinese)
    [23] 刘建元. 烧结过程中微观结构演变行为的Monte Carlo模拟[D]. 长沙:中南大学,2011. LIU Jianyuan. Monte carlo simulation for the microstrueture development during the sintering proeess[D].Changsha: Central South University,2011. (in Chinese)
    [24] Luque A, Aldazabal J, Martinex-esnaola J M, et al. Geometrical Monte Carlo model of liquid phase sintering[J]. Mathematics and Computers in Simulation, 2010, 80: 1469-1486.
    [25] Aldazabal J, A. Martin-meizoso A, Martinex-esnaola J M. Simulation of liquid phase sintering using the Monte Carlo method[J]. Materials Science and Engineering, 2004, A365: 151-155.
    [26] Mori K, Matsubara H, Noguchi N. Micro-macro simulation of sintering process by coupling Monte Carlo and finite element methods[J]. International Journal of Mechanical Sciences, 2004, 46: 841-854.
    [27] Braginsky M, Tikare V, Olevsky E. Numerical simulation of solid state sintering[J]. International Journal of Solids and Structures, 2005, 42: 621-636.
    [28] 马非,申倩倩,贾虎生,等. 用改进的 Monte Carlo 算法模拟多孔Al2O3陶瓷烧结过程中的晶粒生长[J]. 人工晶体学报,2011,40(5):1299-1304. MA Fei, SHEN Qianqian, JIA Husheng, et al. Simulation of the grain growth of porous Al2O3 ceramics during sintering process by modified Monte Carlo method[J]. Journal of Synthetic Crystals, 2011, 40(5): 1299-1304. (in Chinese)
    [29] 马文婧.相场方法研究粉末陶瓷烧结的微结构演化[D].南宁:广西大学,2012. MA Wenjing.Phase field method for Microstructure evolution of powder ceramic sintering[D].Nanning: Guangxi University,2012.(in Chinese)
    [30] Kumar V, Fang Z Z, Fife P C. Phase field simulations of grain growth during sintering of two unequal-sized particles[J]. Materials Science and Engineering A, 2010, 528(1): 254-259.
    [31] 谢辉,孙军,杨刘晓,等. Mo 粉末烧结过程的相场模拟[J]. 锻造技术,2006, 27(12):1366-1369. XIE Hui, SUN Jun, YANG Liuxiao, et al. Phase-field simulation of Mo powder during sintering process[J]. Foundry Technology, 2006,27(12): 1366-1369. (in Chinese)
    [32] 贾磊,谢辉,吕振林. Mo粉末烧结现象与烧结机制研究[J]. 锻造技术,2008, 29(3): 395-399. JIA Lei, XIE Hui, LU Zhenlin. Study of sintering phenomena and sintering mechanism of Mo powders[J]. Foundry Technology, 2008, 29(3): 395-399. (in Chinese)
    [33] 黄创高,田军龙,罗志荣,等. 陶瓷颗粒烧结过程中气孔的扩散转移[J]. 广西物理,2010, 31(1): 12-15. HUANG Chuanggao, TIAN Junlong, LUO Zhirong, et al. Pore diffusion in process of ceramics sintering[J]. Guangxi Physics, 2010, 31(1): 12-15. (in Chinese)
    [34] 刘明治,张瑞杰,方伟,等. 相场法模拟两相多孔组织烧结[J]. 金属学报,2012, 48(10):1207-1214. LIU Mingzhi, ZHANG Ruijie, FANG Wei, et al. Phase field simulation of sintering process in biphase porous material[J]. Acta Metallurgica sinica, 2012, 48(10):1207-1214. (in Chinese)
    [35] ZHANG Ruijie, CHEN Zhongwei, FANG Wei, et al. Thermodynamic consistent phase field model for sintering process with multiphase powders[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:783-789.
    [36] Asp K, Ågren J. Phase-field simulation of sintering and related phenomena-A vacancy diffusion approach[J]. Acta Materialia, 2006, 54(5): 1241-1248.
    [37] Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach[J]. Acta Materialia, 2006, 54(4): 953-961.
    [38] Fukui Y, Fujii T, Tohgo K, et al. Multi-physics simulation of oxygen diffusion in PSZ-Ti composites during spark plasma sintering process[J]. Computational Materials Science, 2014, 95: 29-34.
    [39] Jeong M S, Yoo J H, Rhim S H, et al. A unified model for compaction and sintering behavior of powder processing[J]. Finite Elements in Analysis and Design, 2012, 53: 56-62.
    [40] Kiani S, Pan J Z, Yeomans J A, et al. Finite element analysis of sintering deformation using densi? cation data instead of a constitutive law[J]. Journal of the European Ceramic Society, 2007, 27: 2377-2383.
    [41] Leclerc H, Gelin J C. Numerical modeling of solid state sintering using heterogeneous packing and diffusion processes[J]. Journal of Materials Processing Technology, 2003 (143/144): 891-894.
    [42] Kraft T, Riedel H. Numerical simulation of solid state sintering; model and application[J]. Journal of the European Ceramic Society, 2004, 24:345-361.
    [43] 郑涛,王军委,陈红玲,等. 磁性磨粒热压烧结过程的温度场模拟[J]. 2012,40(3): 47-49. ZHENG Tao, WANG Junwei, CHEN Hongling, et al. Temperature field simulation of magnetic abrasive hot pressing process[J]. Rare Metals and Cemented Carbides, 2012, 40(3): 47-49. (in Chinese)
    [44] 宋毅,周照耀,赖燕根,等. 放电等离子烧结粉末材料的多场耦合有限元[J]. 热加工工艺,2011, 40(21): 1-8. SONG Yi, ZHOU Zhaoyao, LAI Yangen, et al. Multi-field coupled FEM model and simulation on spark plasma sintering of powder material[J]. Hot Working Technology, 2011, 40(21):1-8. (in Chinese)
    [45] Bruchon J, Pino-munoz D, Valdivieso F, et al. Finite element simulation of mass transport during sintering of a granular packing. Part I. surface and lattice Diffusions[J]. Journal of the American Ceramic Society, 2012, 95 (8): 2398-2405.
    [46] Pan J, Cocks A C F. A numerical technique for the analysis of coupled surface and grain-boundary diffusion[J]. Acta Metallurgica et Materialia, 1995, 43(4): 1395-1406.
    [47] Pan J, Ch'ng H N, Cocks A C F. Sintering kinetics of large pores[J]. Mechanics of Materials, 2005, 37: 705-721.
    [48] Pan J, Cocks A C F, Kucherenko S. Finite element formulation of coupled grain-boundary and surface diffusion with grain-boundary migration[J]. Proceedings of the Royal Society, 1997, 453: 2161-2184.
    [49] Pan J, Huang R. Finite element calculation of sintering deformation using limited experimental data[J]. Materials Science Forum, 2009, 606: 103-118.
    [50] Park S J, Chung S H, Johnson J L, et al. Finite element simulation of liquid phase sintering with tungsten heavy alloys[J]. Materials Transactions, 2006, 47: 2745-2752.
    [51] 高虹,赵良举,曾丹苓,等. 团簇在金属表面沉积过程的分子动力学模拟[J]. 重庆大学学报,2007,30(3):51-55. GAO Hong, ZHAO Liangju, ZENG Danling, et al. Molecular dynamics simulation of Ni cluster depositing on Cu surface in cold spray[J]. Journal of Chongqing University, 2007, 30(3): 51-55. (in Chinese)
    [52] 赵良举,李斌,高虹,等. Au纳米团簇熔点的分子动力学模拟[J]. 重庆大学学报,2009,32(1):67-70. ZHAO Liangju, LI Bing, GAO Hong, et al. Molecular dynamics simulation of the melting points of Au nana-clusters[J]. Journal of Chongqing University, 2009, 32(1): 67-70. (in Chinese)
    [53] 吴茂,常玲玲,崔亚男,等. 纳米金颗粒熔化与烧结过程的分子动力学模拟[J]. 粉末冶金材料科学与工程, 2013,18(6):775-782. WU Mao, CHANG Lingling, CUI Yanan, et al. Molecular dynamics simulation of Au nanoparticles melting and sintering processes[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(6):775-782. (in Chinese)
    [54] Ding L, Davidchack R L, Pan J. A molecular dynamics study of sintering between nanoparticles[J]. Computational Materials Science, 2009, 45: 247-56.
    [55] Moitra A, Kim S, Kim S G, et al. Investigation on sintering mechanism of nanoscale powder based on atomistic simulation[J]. Acta Materialia, 2010, 58: 3939-3951.
    [56] Cheng C W, Shih C F, Behera R K, et al. Investigation of initial stages of nano-ceramic particle sintering using atomistic simulations[J]. Surface & Coatings Technology, 2013, 231: 316-322.
    [57] Bai X M, Zhang Y F, Tonks M R. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations[J]. Acta Materialia, 2015, 85: 95-106.
    [58] Tsuruta K, Totsuji H, Totsuji C. Neck formation processes of nanocrystalline silicon carbide: a tight-binding molecular dynamics study[J]. Philosophical Magazine Letters, 2001, 81(5): 357-366.
    [59] 闫秋实.碳化硅电火花烧结的致密化行为的研究[D].吉林:吉林大学,2014. YAN Qiu Shi.Study on densification behavior of CSi electric spark sintering.Jilin: Jilin University,2014.(in Chinese)
    [60] Xu J, Sakanoi R, Higuchi Y, et al. Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system[J]. The Journal of Physical Chemistry C, 2013, 117(19): 9663-9672.
    [61] Song P, Wen D. Molecular dynamics simulation of the sintering of metallic nanoparticles[J]. Journal of Nanoparticle Research, 2010, 12(3): 823-829.
    [62] 温彤,雷杰,裴春雷. 一种离散单元法的弹性可变形颗粒模型[J]. 重庆大学学报,2009,32(7):743-746. WEN Tong, LEI Jie, PEI Chunlei. Elastic deformable particle model in discrete element method[J]. Journal of Chongqing University, 2009, 32(2): 743-746. (in Chinese)
    [63] Wonisch A, Guillon O, Kraft T, et al. Stress induced anisotropy of sintering alumina, discrete element modeling and experiments[J]. Acta Materialia, 2007, 55: 5187-5199.
    [64] Martin C L, Schneider L C R, Olmos L, et al. Discrete element modeling of metallic powder sintering[J]. Scripta Materialia, 2006, 55: 425-428.
    [65] Fu Z W, Polfer P, Kraft T, et al. Three-dimensional shrinkage behavior of green tapes derived from spherical-shaped powders: Experimental studies and numerical simulations[J]. Journal of the European Ceramic Society, 2015, 35: 2413-2425.
    [66] Nosewicz S, Rojek J, Pietrzak K, et al. Viscoelastic discrete element model of powder sintering[J]. Powder Technology, 2013, 246: 157-168.
    [67] Henrich B, Wonisch A, Kraft T, et al. Simulations of the in? uence of rearrangement during sintering[J]. Acta Materialia, 2007, 55: 753-762.
    [68] Olmos L, Martin C L, Bouvard D. Sintering of mixtures of powders: Experiments and modelling[J]. Powder Technology, 2009, 190: 134-140.
    [69] 罗森,王卫领,朱苗勇. Fe-C二元合金凝固过程强制对流作用下柱状晶生长行为的数值模拟[J]. 重庆大学学报,2015, 38(2): 80-86. LUO Sen, WANG Weiling, ZHU Miaoyong. Numerical simulation of columnar dendritic growth with forced convection during the solidification process of Fe-C binary alloy[J]. Journal of Chongqing University, 2015, 38(2): 80-86. (in Chinese)
    [70] Wakai F, Yoshida M, Shinoda Y, et al. Coarsening and grain growth in sintering of two particles of di? erent sizes[J]. Acta Materialia, 2005, 53: 1361-1371.
    [71] Zhu Y Y, Liang S H, Zhan Z J, et al. Simulation of the change of sintering neck between two grains in two dimensions[J]. Acta Metallurgica Sinica (English Letters), 2006, 19(6): 397-404.
    [72] Shinagawa K. Simulation of grain growth and sintering process by combined phase-field/ discrete-element method[J]. Acta Materialia, 2014, 66: 360-369.
    引证文献
引用本文

张龙,张晓敏,褚钟祥,彭松.粉末烧结的计算机模拟方法研究进展[J].重庆大学学报,2016,39(5):39-48.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-02-05
  • 在线发布日期: 2016-10-31
文章二维码