镍钴硫化物的制备及其反应温度对形貌和超级电容器性能的影响
作者:
基金项目:

中央高校重点项目:超高能量密度超级电容器负极材料的制备及性能研究。(106112015CDJZR305501)。


Preparation of Ni-Co sulfide and the influence of reaction temperature on the morphology and the properties of supercapacitor
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用一步溶剂热合成法制备了镍钴硫化物纳米微球,利用X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和X光电子能谱(XPS)对制备的材料进行了表征。采用循环伏安和恒电流充放电等电化学方法考察了镍钴硫化物用作超级电容器的电极材料的性能。160℃制备的材料在2 mA/cm2的电流密度下,测得的质量比电容和面积比电容分别为1 298 F/g和1.13 F/cm2。在电流密度为10 mA/cm2下,经过10 000圈的循环稳定性测试后,比电容保持了原来的70.8%。此外,通过对反应温度的控制,研究了反应温度对其超级电容器性能的影响。结果表明,反应温度对生成物的形貌几乎没有什么影响,对其电化学性能有一定的影响。

    Abstract:

    Nickel cobalt sulfidenanospheres was synthesized by facile solvothermal synthesis method. The properties of the as-prepared Ni-Co sulfide powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV), galvanostatic charge-discharge measurement were also employed to test the electrochemical performances of nickel cobalt sulfide as electrode material of supercapacitor. The mass specific capacitance and the area specific capacitance of the electrode prepared under 160℃ was 1 298 F/g and 1.13 F/cm2 respectively at charge and discharge current density of 2 mA/cm2. After a 10 000 cycle test at current density of 10 mA/cm2, the specific capacitance retains 70.8% of its initial capacitance. In addition, the influence of reaction temperature on the performance of the supercapacitor was studied by controlling the reaction temperature. The results show that the reaction temperature have little influence on its morphologies, but a certain impact on electrochemical performance.

    参考文献
    [1] Zhang J T, Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. ChemSusChem, 2012, 5(5):818-841.
    [2] Lee H, Kang J, Mi S C, et al. MnO2/graphene composite electrodes for supercapacitors:the effect of graphene intercalation on capacitance[J]. Journal of Materials Chemistry, 2011, 21(45):18215-18219.
    [3] Wang G P, Zhang L, Zhang J J. ChemInform abstract:a review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2011, 41(2):797-828.
    [4] Yang J Q, Duan X C, Qin Q, et al. Solvothermal synthesis of hierarchicalflower-like β-NiS with excellent electrochemical performance for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(27):7880-7884.
    [5] Zhang L, Wu H B, Lou X W. Unusual CoS2 ellipsoids with anisotropic tube-like aavities and their application in supercapacitors[J].Chemical Communications, 2012, 48(55):6912-6914.
    [6] Chen H C, Jiang J J, Xia D D, et al. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale, 2013, 5(19):8879-8883.
    [7] Wu H B, Pang H, Lou X W. Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors[J]. Energy and Environmental Science, 2013, 6(12):3619-3626.
    [8] Wei T Y, Chen C H, Hu C C, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances:spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials, 2010, 22(3):347-351.
    [9] Li Y H, Cao L J, Qiao L, et al. Ni-Co sulfide nanowires on nickel foam with ultra high capacitance for asymmetric supercapacitors[J]. J.mater.chem.a, 2014, 2(18):6540-6548.
    [10] Wan H Z, Jiang J J, Yu J W, et al.. NiCo2S4 porous nanotubes synthsis via sacrificialtemplates:high-performance electrode materials ofsupercapacitors[J].CrystEngComm, 2013, 15(38):7649-7651.
    [11] Liu Q, Jin J T, Zhang J Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. ACS Applied Materials & Interfaces, 2013, 5(11):5002-5008.
    [12] Zhuang Z B, Peng Q, Li Y D. Controlled synthesis of semiconductor nanostructures in the liquid phase[J]. Chemical Society Reviews, 2011, 40(11):5492-5513.
    [13] Jiang Y, Wu Y, Qian Y T, et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J]. Journal of the American Chemical Society, 2000, 122(49):12383-12384.
    [14] Ota J R, Srivastava S K. A new hydrothermal route for synthesis of molybdenum disulphide nanorods and related nanostructures[J]. Journal of Nanoscience & Nanotechnology, 2006, 6(1):168-174.
    [15] Mi L W, Ding Q, Chen W H, et al. 3D porous nano/micro nickel sulfides with hierarchical structure:controlled synthesis, structurecharacterization and electrochemical properties[J]. Dalton Trans, 2013, 42(16):5724-5730.
    [16] Justin P, Rao G R. CoS spheres for high-rate electrochemical capacitive energy storage application[J]. International Journal of Hydrogen Energy, 2010, 35(18):9709-9715.
    [17] Chen H C, Jiang J J, Zhang L, et al. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors:Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance[J]. Journal Power Sources, 2014, 254(15):249-257.
    [18] Yuan Y F, Xia X H, Wu J B, et al. Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application[J]. Electrochemistry Communications, 2011, 13(10):1123-1126
    [19] Yin H H, Song C Q, Wang Y, et al. Influence of morphologies and pseudocapacitive contributions for charge storage in V2O5 micro/nano-structures[J]. Electrochimica Acta, 2013, 111(6):762-770.
    [20] Sankar K V, Selvan R K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors[J]. Journal of Power Sources, 2015, 275:399-407.
    [21] Pu J, Cui F L, Chu S B, et al. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. Acs Sustainable Chemistry & Engineering, 2014, 2(4):809-815.
    [22] Wei W T, Mi L W, Gao Y, et al. Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors[J]. Chemistry of Materials, 2014, 26(11):3418-3426.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖明佳,乔雷,陈海岸,揭芳芳.镍钴硫化物的制备及其反应温度对形貌和超级电容器性能的影响[J].重庆大学学报,2016,39(6):95-100.

复制
分享
文章指标
  • 点击次数:1110
  • 下载次数: 1836
  • HTML阅读次数: 551
  • 引用次数: 0
历史
  • 收稿日期:2016-07-20
  • 在线发布日期: 2016-12-12
文章二维码