基于GRNN算法的潜在产出与产出缺口估算模型
作者:
基金项目:

云南省教育厅科学研究基金重点项目资助(No.2015C006Z);云南省哲学社会科学规划资助项目(YB2015030)。


Potential output and output gap model based on GRNN algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于神经网络学习性、非参数估计的优势,建立估算经济潜在产出和产出缺口的广义回归神经网络(GRNN)模型,对中国产出缺口和潜在产出增速的1978—2015年数据进行估算、2016—2020年数据进行多步预测,实证分析较好地克服了生产函数法中由于事先假设确定的函数形式及选择不同函数结果不同的问题,并且所估算的潜在产出增速与经济增速具有较高的契合度。模型分析得出:中国经济增长速度大致维持在潜在产出增长率水平附近,便可实现通货膨胀率维持在合理水平,且较好地实现总体供需平衡的目的。

    Abstract:

    Based on the advantages of learning and non-parametric estimating of neural networks, we built a general regression neural network (GRNN) model to estimate the output gap and the potential output growth of China according to the data from 1978 to 2015, and predict the data from 2016 to 2020. Meanwhile, the relationship between the mentioned data and the economic growth was empirically analyzed. The model can overcome the problems of the function form determined by the presupposition in the production function method and different results coming from different functions, and the estimated output growth has a high degree of fit with the economic growth. Based on the model analysis, it is concluded that if China's economic growth rate is maintained at the level of potential output growth rate, the inflation rate will be maintained at a reasonable level, and the balance between supply and demand will be well achieved.

    参考文献
    [1] Chow G C. Capital formation and economic growth in China[J]. The Quarterly Journal of Economics, 1993, 108(3):809-842.
    [2] Elmeskov J. High and persistent unemployment:assessment of the problem and its causes[M]. Paris:OECD Economics Department Working, 1993.
    [3] Hirose Y, Naganuma S. Structural estimation of the output gap:a bayesian DSGE approach[J]. Economic Inquiry, 2010, 48(4):864-879.
    [4] Paccagnini A. Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model[J]. Studies in Nonlinear Dynamics & Econometrics, 2014, 19(2):107-136.
    [5] Iiboshi H, Matsumae T, Namba R, et al. Estimating a DSGE model for Japan in a data-rich environment[J]. Journal of the Japanese & International Economies, 2015, 36:25-55.
    [6] Fernald J G. Productivity and potential output before, during, and after the great recession[J]. Nber Macroeconomics Annual, 2014, 29(1):1-51.
    [7] Kiley M T. Output gaps[J]. Journal of Macroeconomics, 2013, 37(27):1-18.
    [8] Garratt A, Mitchell J, Vahey S P. Measuring output gap nowcast uncertainty[J]. International Journal of Forecasting, 2014, 30(2):268-279.
    [9] 陈亮,陈霞,吴慧.中国经济潜在增长率的变动分析:基于日韩及金砖四国等典型国家1961~2010年的经验比较[J].经济理论与经济管理,2012(6):44-55. CHEN Liang, CHEN Xia, WU Hui. Research on the chinese potenial gdp growth rate:based on the comparison of Japan, Korea, and BRIC countries[J]. Economic Theory and Business Management, 2012(6):44-55. (in Chinese)
    [10] 王少平,胡进.中国GDP的趋势周期分解与随机冲击的持久效应[J].经济研究,2009(4):65-76. WANG Shaoping, HU Jin. Trend cycle decomposition and stochastic impact effect of Chinese GDP[J]. Economic Research Journal, 2009(4):65-76. (in Chinese)
    [11] 王子博.中国潜在产出估算模型的设计与应用:基于Kalman滤波的实证分析[J].统计与信息论坛,2012,27(1):27-32. WANG Zibo. Design and application of Chinese potential output estimation modelan empirical analysis:based on kalman filtering[J]. Statistics & Information Forum, 2012, 27(1):27-32. (in Chinese)
    [12] Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6):568-576.
    [13] 陈建功,刘海源,张永兴.锚杆锚固质量的定量分析方法[J].重庆大学学报,2009, 32(9):1043-1048. CHEN Jiangong, LIU Haiyuan, ZHANG Yongxing. Quantitative assessment method for the quality of anchors[J]. Journal of Chongqing University, 2009, 32(9):1043-1048. (in Chinese)
    [14] 辜小花,廖志强,李太福,等.面向抽油机节能的GRNN过程建模及工艺参数优化[J].重庆大学学报,2013,36(6):130-136. GU Xiaohua, LIAO Zhiqiang, LI Taifu, et al. Beam pumping process modeling and parameters optimization based on generalized regression neural networks for energy conservation[J]. Journal of Chongqing University, 2013, 36(6):130-136. (in Chinese)
    [15] Zhou Z K, Zhang Q J, Yang H. Analyzing effects of monetary policy change government bond yield curve in exchange by using GRNN[C]//2013 International Conference on Computing, Networking and Communications (ICNC). Tianjian:IEEE Computer Society Press, 2009:75-80.
    [16] Kokkinos Y, Margaritis K G. A fast progressive local learning regression ensemble of generalized regression neural networks[C]//ACM Proceedings of the Panhellenic Conference on Informatics. New York:ACM Press, 2015:109-114.
    [17] Dash Y, Dubey S K, Rana A. Maintainability prediction of object oriented software system by using artificial neural network approach[J]. International Journal of Soft Computing and Engineering, 2012, 2(2):420-423.
    [18] 王小鲁,樊刚.中国收入差距的走势和影响因素分析[J].经济研究,2005(10):24-36. WANG Xiaolu, FAN Gang. Income inequality in China and its influential factors[J]. Economic Research Journal, 2005(10):24-36. (in Chinese)
    [19] 郭庆旺,贾俊雪.中国潜在产出与产出缺口的估算[J].经济研究,2004(5):31-39. GUO Qingwang, JIA Junxue. Estimating potential output and the output gap in China[J]. Economic Research Journal, 2004(5):31-39. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张强劲,陈忠华.基于GRNN算法的潜在产出与产出缺口估算模型[J].重庆大学学报,2016,39(6):148-154.

复制
分享
文章指标
  • 点击次数:992
  • 下载次数: 1726
  • HTML阅读次数: 583
  • 引用次数: 0
历史
  • 收稿日期:2016-08-12
  • 在线发布日期: 2016-12-12
文章二维码