硼对第二代镍基单晶高温合金显微组织的影响
作者:
基金项目:

国家重点基础研究发展计划资助项目(2010CB631201)。


Effects of boron on the microstructure of second generation Ni-based single crystal superalloy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    硼(B)是强化镍基单晶合金小角度晶界的重要微量元素,但目前关于B对镍基单晶合金显微组织影响的系统报道非常有限。通过对3种不同B含量(质量分数分别为0、0.01%、0.02%)的第二代镍基单晶合金DD11铸态及热处理态组织定量表征,研究了B对相转变温度、(γ+γ')共晶组织、硼化物的影响。结果表明:B显著降低合金的固液相线,提高铸态共晶组织体积分数;0.01% B的加入,合金中未出现M3B2型硼化物相;而0.02% B的加入,显著促进了骨架状硼化物的形成,降低合金初熔点,引起残余共晶含量的大幅度提高;骨架状硼化物吸收较多的Cr、Mo和W等元素,降低合金的固溶强化效果,可导致单晶合金基体的蠕变性能大幅度降低。研究结果对认识单晶合金中微量元素B的作用机理及优化B成分范围具有理论指导意义。

    Abstract:

    Boron (B) is added into single crystal superalloys as a micro-alloying element to strengthen low angle grain boundaries. However, there are limited systematic investigations about the effect of B on the microstructures of single crystal superalloy. We studied the influences of B on phase transition temperature, (γ+γ') eutectic and borides by analyzing the quantitative characterization of the as-cast and heat-treated microstructures of 3 kinds of second generation Ni-based single crystal superalloys DD11 with various additions of B (mass fraction of 0, 0.01% and 0.02%). The results indicate that increasing B addition can significantly decrease the solidus and liquidus temperature and enhance the volume fraction of (γ+γ') eutectic. The borides of M3B2 are not observed in the alloy with 0.01% B addition. However, when the B addition is 0.02%, the script-like borides are precipitated in the interdendritic region and the incipient melting point is decreased, and thus the volume fraction of residual eutectic is significantly improved. The script-like borides are rich in Cr, Mo and W, which decreases the solid solution strengthening effect, and thus creep properties of the alloy may be significantly decreased. This study would be helpful for the understanding of B's role in Ni-base single crystal superalloys and the optimization of B content.

    参考文献
    [1] Sangid M D, Sehitoglu H, Maier H J, et al. Grain boundary characterization and energetics of superalloys[J]. Materials Science & Engineering A, 2010, 527(26):7115-7125.
    [2] Stinville J C, Gallup K, Pollock T M. Transverse creep of nickel-base superalloy bicrystals[J]. Metallurgical and Materials Transactions A, 2015, 46(6):2516-2529.
    [3] Harris K, Wahl J B. Improved single crystal superalloys, CMSX-4(R)(SLS)[La+Y] and CMSX-486(R)[C]//Superalloys. 2004:45-52.
    [4] Shah D M, Cetel A. Evaluation of PWA1483 for large single crystal IGT blade applications[C]//Superalloys. 2000:295-304.
    [5] Decker R F, Rowe J P, Freeman J W. Boron and zirconium from crucible refractories in a complex heat-resistant alloy[EB/OL]. Technical Report Archive & Image Library, 1958[2016-11-11].https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930092370.pdf.
    [6] Reed R C. The superalloys:fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006.
    [7] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al[J]. Acta Metallurgica, 1985, 33(2):213-229.
    [8] Brenner S S, Hua M J. On grain boundary phases in B-doped Ni3Al[J]. Scripta Metallurgica et Materialia, 1990, 24(4):671-676.
    [9] 蔡玉林,郑运荣.高温合金的金相研究[M].北京:国防工业出版社,1986. CAI Yulin, ZHENG Yunrong. Metallographic study of high temperature alloy[M]. Beijing:National Defend Industry Press, 1986. (in Chinese)
    [10] Kontis P, Yusof H A M, Moore K L, et al. On the effect of boron on the mechanical properties of a new polycrystalline superalloy[C]//MATEC Web of Conferences.[S.l.]:EDP Sciences, 2014.
    [11] Yan B C, Zhang J, Lou L H, et al. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy[J]. Materials Science and Engineering A, 2008, 474(1):39-47.
    [12] Shulga A V. Boron and carbon behavior in the cast Ni-base superalloy EP962[J]. Journal of Alloys and Compounds, 2007, 436(1/2):155-160.
    [13] Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures[J]. Acta Materialia, 2002, 50(5):1095-1112.
    [14] Steuer S, Singer R F. Suppression of boride formation in transient liquid phase bonding of pairings of parent superalloy materials with different compositions and grain structures and resulting mechanical properties[J]. Metallurgical and Materials Transactions A, 2014, 45(8):3545-3553.
    [15] 任怀亮.金相实验技术[M].北京:冶金工业出版社,1986. REN Huailiang. Technology of Metallographic Experiment[M]. Beijing:Metallurgy Industry Press, 1986. (in Chinese)
    [16] 张炳大,佟英杰,张嘉媛,等.M91镍基铸造高温合金的组织和凝固特性[J].金属学报,1990(6):52-56. ZHANG Bingda, TONG Yingjie, ZHANG Jiayuan, et al. Microstructure and solidification characteristics of M91 cast Ni-based superalloy[J]. Acta Materialia, 1990(6):52-56. (in Chinese)
    [17] Seo S, Kim I, Lee J, et al. Eta phase and boride formation in directionally solidified Ni-base superalloy IN792+Hf[J]. Metallurgical and Materials Transactions A, 2007, 38(4):883-893.
    [18] 郑运荣,蔡玉林,阮中慈,等.Hf和Zr在高温材料中作用机理研究[J].航空材料学报,2006,26(3):25-34. ZHENG Yunrong, CAI Yurong, RUAN Zhongci, et al. Investigation of effect mechanism of hafnium an zirconium on high temperature meterials[J]. Journal of Aeronautical Meterials, 2006, 26(3):25-34. (in Chinese)
    [19] Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys[J]. Materials Science and Engineering A, 2011, 528(9):3435-3444.
    [20] Fleischmann E, Miller M K, Affeldt E, et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys[J]. Acta Materialia, 2015, 87:350-356.
    [21] Rüsing J, Wanderka N, Czubayko U, et al. Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy[J]. Scripta Materialia, 2002, 46(3):235-240.
    [22] Chen J Y, Zhao B, Feng Q, et al. Effects of Cr on the stress rupture of Ni-based single crystal superalloys[C/OL]//138th TMS Annual Meeting and Exhibition,February 15-19, 2009,San Francisco,CA. 2009:233-240[2016-11-11].http://202.204.50.104/handle/400002224/4237.
    [23] Fährmann M, Fratzl P, Paris O, et al. Influence of coherency stress on microstructural evolution in model Ni-Al-Mo alloys[J]. Acta Materialia, 1995, 43(3):1007-1022.
    [24] 胡聘聘,陈晶阳,冯强,等.Mo对镍基单晶高温合金组织及持久性能的影响[J].中国有色金属学报,2011,21(2):332-340. HU Pinpin, CHEN Jingyang, FENG Qiang, et al. Effects of Mo on microstructure and stress-rupture property of Ni-based single crystal superalloys[J]. The Chinese Journal of Nonferrous Metels, 2011, 21(2):332-340. (in Chinese)
    [25] Liu L R, Jin T, Zhao N R, et al. Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy[J]. Materials Science and Engineering A, 2004, 385(1/2):105-112.
    [26] Wang L, Wang D, Liu T, et al. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy[J]. Materials Characterization, 2015, 104:81-85.
    [27] 赵云松,张剑,骆宇时,等.Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J].金属学报,2015,51(10):1261-1272. ZHANG Yunsong, ZHANG Jian, LUO Yushi, et al. Effects of Hf on high temperature low stress rupture properties of a second generation Ni-based single crystal superalloy DD11[J]. Acta Metall Sin, 2015, 51(10):1261-1272. (in Chinese)
    [28] Witt M C, Charles J A. Boride particles in a powder metallurgy superalloy[J]. Materials Science & Technology, 1985, 1(12):1063-1068.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵云松,骆宇时,张剑,郭会明,方向,唐定中.硼对第二代镍基单晶高温合金显微组织的影响[J].重庆大学学报,2017,40(1):76-85.

复制
分享
文章指标
  • 点击次数:1117
  • 下载次数: 3
  • HTML阅读次数: 540
  • 引用次数: 0
历史
  • 收稿日期:2016-09-05
  • 在线发布日期: 2017-01-16
文章二维码