联合局部和全局稀疏表示的磁共振图像重建方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年基金(61402062);中央高校基本科研业务费专项基金(CDJZR12090003);重庆市前沿与应用基础研究资助项目(CSTC2015JCYJA40037,CSTC2013JCYJA40038)。


MR image reconstruction by combining local and global sparse representations
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在压缩传感中独立使用全局或局部稀疏字典所分别导致的图像细节或整体图像结构信息的丢失,提出了一种联合利用局部和全局稀疏约束来捕捉磁共振图像细节和整体结构信息的磁共振图像重建算法。该算法首先从特定的磁共振图像中训练出稀疏字典,然后利用该字典进行局部稀疏编码。其次,利用预定义的全局字典来加强磁共振图像的全局稀疏性。最后,在局部和全局稀疏的共同约束下,利用非线性共轭梯度算法来对重建模型进行求解。整个重建过程可以重复迭代以逐步改善重建质量。实验结果表明:当下采样因子达到10时,相比于字典学习算法(dictionary learning MRI,DLMRI),提出的算法在重建质量上可以提高1-6 dB。

    Abstract:

    The compressed-sensing-based methods use the global or the local sparse dictionaries separately, which respectively results in the loss of image details or overall structures of MR(magnetic resonance) images. In order to solve this problem, a novel imaging algorithm combining both local and global sparse constraints was proposed to capture details and overall structures of MR images. Firstly, a spare dictionary was trained from specific MR images, and then the local sparse representations were obtained via the dictionary. Secondly, traditional analytical dictionaries were used to promote the global sparse structures of MR images. Finally, the reconstruction was solved by using a nonlinear conjugate gradient with the known local and global sparse constraints. This procedure was repeated iteratively to improve the quality of reconstruction. And experimental results demonstrate that compared with the dictionary learning magnetic resonance imaging method (dictionary learning MRI, DLMRI), the proposed algorithm can improve the image reconstruction by 1-6 dB when the reduction factor is up to 10.

    参考文献
    相似文献
    引证文献
引用本文

葛永新,林梦然,洪明坚.联合局部和全局稀疏表示的磁共振图像重建方法[J].重庆大学学报,2017,40(1):93-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-01-16
  • 出版日期:
文章二维码