联合局部和全局稀疏表示的磁共振图像重建方法
作者:
基金项目:

国家自然科学基金青年基金(61402062);中央高校基本科研业务费专项基金(CDJZR12090003);重庆市前沿与应用基础研究资助项目(CSTC2015JCYJA40037,CSTC2013JCYJA40038)。


MR image reconstruction by combining local and global sparse representations
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对在压缩传感中独立使用全局或局部稀疏字典所分别导致的图像细节或整体图像结构信息的丢失,提出了一种联合利用局部和全局稀疏约束来捕捉磁共振图像细节和整体结构信息的磁共振图像重建算法。该算法首先从特定的磁共振图像中训练出稀疏字典,然后利用该字典进行局部稀疏编码。其次,利用预定义的全局字典来加强磁共振图像的全局稀疏性。最后,在局部和全局稀疏的共同约束下,利用非线性共轭梯度算法来对重建模型进行求解。整个重建过程可以重复迭代以逐步改善重建质量。实验结果表明:当下采样因子达到10时,相比于字典学习算法(dictionary learning MRI,DLMRI),提出的算法在重建质量上可以提高1-6 dB。

    Abstract:

    The compressed-sensing-based methods use the global or the local sparse dictionaries separately, which respectively results in the loss of image details or overall structures of MR(magnetic resonance) images. In order to solve this problem, a novel imaging algorithm combining both local and global sparse constraints was proposed to capture details and overall structures of MR images. Firstly, a spare dictionary was trained from specific MR images, and then the local sparse representations were obtained via the dictionary. Secondly, traditional analytical dictionaries were used to promote the global sparse structures of MR images. Finally, the reconstruction was solved by using a nonlinear conjugate gradient with the known local and global sparse constraints. This procedure was repeated iteratively to improve the quality of reconstruction. And experimental results demonstrate that compared with the dictionary learning magnetic resonance imaging method (dictionary learning MRI, DLMRI), the proposed algorithm can improve the image reconstruction by 1-6 dB when the reduction factor is up to 10.

    参考文献
    [1] Liang Z P, Lauterbur P C. Principles of magnetic resonance imaging[M]. Piscataway NJ:IEEE Press, 2000.
    [2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
    [3] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
    [4] Candès E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2004, 52(2):489-509.
    [5] 王水花,张煜东.压缩感知磁共振成像技术综述[J].中国医学物理学杂志,2015,32(2):158-162. WANG Shuihua, ZHANG Yudong. Survey on compressed sensing magnetic resonance imaging technique[M]. Chinese Journal of Medical Physics, 2015, 32(2):158-162. (in Chinese)
    [6] 陈秀梅,王敬时,王伟,等.基于压缩感知的MRI图像的二维重构和三维可视化[J].中国医学影像学杂志,2015(3):235-240. CHEN Xiumei, WANG Jingshi, WANG Wei, et al. Two-dimensional reconstruction and three-dimensional visualization of MRI images based on compressed sensing[J]. Chinese Journal of Medical Imaging, 2015(3):235-240. (in Chinese)
    [7] 蒋明峰,刘渊,徐文龙,等.基于全变分扩展方法的压缩感知磁共振成像算法研究[J]. 电子与信息学报,2015(11):2608-2612. JIANG Mingfeng, LIU Yuan, XU Wenlong, et al. The study of compressed sensing MR image reconstruction algorithm based on the extension of total variation method[J]. Journal of Electronics & Information Technology, 2015(11):2608-2612. (in Chinese)
    [8] Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.
    [9] Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling & Simulation, 2006, 5(3):861-899.
    [10] Hong M, Yu Y, Wang H, et al. Compressed sensing MRI with singular value decomposition-based sparsity basis[J]. Physics in Medicine & Biology, 2011, 56(19):5734-5737.
    [11] 李青,杨晓梅,李红.基于压缩感知的自适应正则化磁共振图像重构[J].计算机应用,2012,32(2):541-544. LI Qing, YANG Xiaomei, LI Hong. Compressed sensing-adaptive regularization for reconstruction of magnetic resonance image[J]. Journal of Computer Applications, 2012, 32(2):541-544. (in Chinese)
    [12] Aharon M, Elad M, Bruckstein A. K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.
    [13] Qu X, Guo D, Ning B, et al. Undersampled MRI reconstruction with patch-based ??佲捥瑣潴扩敯牮?????????????桝椮挠慍条潧???汩汣椠湒潥楳獯??啮卣??????????????有??????戩爺?嬶名木崹?吷爮漼灢灲 ̄????爠敗敡摮?椠獙?朠潙潩摮??汌朮漠牃楯瑭桰浲楥捳?牥敤猠畳汥瑮獳?普潧爠?獹灮慡牭獩散?慣灡灲牤潩硡楣洠慣瑩楮潥渠孍?嵉???????呬牥慡湲獮慥捤琠楳潰湡獴?潯湴??湰景潲牡浬愠瑤楩潣湴?呯桮敡潲特祛??金?あ????つ??ち?????????????戠牉?孅??嵔?乡潮捳敡摣慴汩????坯牮椬朠栲琰愱渴搬?匶?????漱渱樰甹札愱琱攲‰朮爼慢摲椾敛渱琵?洠效琏棢漬撯珎孤?嵆??丠界浡敭爬楉挮懺沎?佁灎瑏榗浐榄竾懏瓪?漼渧??? わ???ぃ???????扁爃?孨??崱??洯攚犮椮挲愰渱′剛愲搰椱漵氭漱朲礭‰匳敝爮癨楴捴数猺????ぷ?孮佦湡汮楧湤敡嵴???癯慭椮汣慮戯汃敯?桦瑥瑲灥???眯眷眹??愰洷攷爮椠捑慕渠牘慩摡楯潢汯漬朠祈?捕漠浙?灮汧獫?睮攬戠??睍眠楆浡杮本愠汥?瘠浡杬? Self-similarity-based MRI image reconstruction with a patch-based nonlocal perator[C/OL]//The 17th Spectroscopy Academic Conference. 2012[2015-12-03]. http://d.wanfangdata.com.cn/Conference/7918077. (in Chinese)
    [16] 赖宗英,屈小波,刘运松,等.基于全局相似关系的压缩感知MRI稀疏重建[C/OL]//第十八届全国波谱学学术年会论文集. 2014[2015-12-03]. http://acad.cnki.net/kns/navi/Catalog.aspx?NaviID=1004&CatalogName=cpfdnavi2&Field=navi178&Value=WLXH201410001&HYJiDaiMa=WLXH201410001. LAI Zongying, QU Xiaobo, LIU Yunsong, et al. Compressed sensing MRI reconstruction using global similarity of patches[C/OL]//The 18th Spectroscopy Academic Conference. 2014[2015-12-03]. http://acad.cnki.net/kns/navi/Catalog.aspx?NaviID=1004&CatalogName=cpfdnavi2&Field=navi178&Value=WLXH201410001&HYJiDaiMa=WLXH201410001. (in Chinese)
    [17] Qu X B, Guo D, Ning B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7):964-77.
    [18] Qu X B, Hou Y K, Lam F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[M].Medical Image Analysis, 2014, 18(6):843-856.
    [19] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning.[J]. IEEE Transactions on Medical Imaging, 2011, 30(5):1028-41.
    [20] Dong W S, Li X, Ma Y, et al. Image restoration via bayesian structured sparse coding[C]//2014 International Conference on Image Processing.[S.l.]:IEEE, 2014:4018-4022.
    [21] Venkataramani R, Bresler Y. Further results on spectrum blind sampling of 2D signals[J]. International Conference on Image Processing
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

葛永新,林梦然,洪明坚.联合局部和全局稀疏表示的磁共振图像重建方法[J].重庆大学学报,2017,40(1):93-102.

复制
分享
文章指标
  • 点击次数:1386
  • 下载次数: 6
  • HTML阅读次数: 834
  • 引用次数: 0
历史
  • 收稿日期:2016-07-20
  • 在线发布日期: 2017-01-16
文章二维码