The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, P. R. China;School of Automotive Engineering, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, P. R. China;School of Automotive Engineering, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Great difficulty exists in the parameter identification of constitutive models of rubber materials because of the nonlinear large deformation characteristics of rubber materials. A new method based on hyperstatic equations was developed in order to improve the accuracy of parameter identification. A rubber bushing was analyzed with finite element (FE) approach, using the parameters identified with the developed method and the least square method. Then the two FE-predicted results were compared with test data. The results reveal that the identification method based on hyperstatic equations can precisely estimate the parameters of rubber material and its accuracy is obviously higher than that of the least square method. The efficiency and reliability of the developed method is validated.
[1] Boyce M C, Arruda E M. Constitutive models of rubber elasticity:a review[J]. Rubber Chemistry and Technology, 2000, 73(3):504-523.
[2] Treloar L R G. The elasticity of a network of long-chain molecules I/Ⅱ[J]. Trans Faraday Soc, 1943, 42(4):83-94.
[3] 左曙光, 朱俊兴, 吴旭东, 等. 一种考虑粘弹塑性的新型橡胶材料本构模型及其参数识别[J]. 重庆大学学报, 2014, 37(9):1-10. ZUO Shuguang, ZHU Junxing, WU Xudong, et al. A novel viscoelastroplastic constitutive model of rubber materials and parameter identification[J]. Journal of Chongqing University, 2014, 37(9):1-10. (in Chinese)
[4] 桑建兵, 刘波, 王志亮, 等. 橡胶类大变形材料有限元模拟及材料参数的确定[J]. 煤矿机械, 2009, 30(2):64-66. SANG Jianbin, LIU Bo, WANG Zhiliang, et al. Nonlinear finite element analysis of rubber like materials and determination of material parameters[J]. Coal Mine Machinery, 2009, 30(2):64-66. (in Chinese)
[5] 罗义建, 高永锋, 刘航. 考虑预载的橡胶悬置多体力学模型参数识别[J]. 重庆大学学报, 2012, 32(S1):20-24. LUO Yijian, GAO Yongfeng, LIU Hang. Parameter identification of rubber mounting multi-body model considering preload[J]. Journal of Chongqing University, 2012, 32(S1):20-24. (in Chinese)
[6] 黄建龙, 解广娟, 刘正伟. 基于Mooney-Rivlin和Yeoh模型的超弹性橡胶材料有限元分析[J]. 橡塑技术与设备, 2008, 34(12):22-26. HUANG Jianlong, XIE Guangjuan, LIU Zhengwei. Finite element analysis of super-elastic rubber materials based on the Mooney-Rivlin and Yeoh model[J]. China Rubber/Plastic Technology and Equipment, 2008, 34(12):22-26. (in Chinese)
[7] 郑明军, 王文静, 陈政南, 等. 橡胶Mooney-Rivlin模型力学性能常数的确定[J]. 橡胶工业, 2003, 50(8):462-465. ZHENG Mingjun, WANG Wenjing, CHEN Zhengnan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model[J]. China Rubber Industry. 2003, 50(8):462-465. (in Chinese)
[8] Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2):389-412.
[9] Ogden R W. Large deformation isotropic elasticity:on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proceedings of the Royal Society of London, 1972, 326(2):565-584.
[10] Puel G, Bourgeteau B, Aubry D. Parameter identification of nonlinear time-dependent rubber bushings models towards their integration in multibody simulations of a vehicle chassis[J]. Mechanical Systems and Signal Processing, 2013, 36(2):354-369.
[11] Sasso M, Palmieri G, Chiappini G, et al. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods[J]. Polymer Testing, 2008, 27(8):995-1004.
[12] Pearson I, Pickering M. The determination of a highly elastic adhesive's material properties and their representation in finite element analysis[J]. Finite Elements in Analysis and Design, 2001, 37(3):221-232.
[13] Darijani H, Naghdabadi R. Hyperelastic materials behavior modeling using consistent strain energy density functions[J]. Acta Mechanica, 2010, 213(3):235-254.
[14] Bechir H, Chevalier L, Chaouche M, et al. Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant[J]. European Journal of Mechanics-A/Solids, 2006, 25(1):110-124.
[15] Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 2012, 66(5):754-771.