基于布谷鸟搜索神经网络的微波加热温度预测模型
作者:
基金项目:

国家重点基础研究973课题资助项目(2013CB328903)。


Temperature prediction model in industrial microwave heating based on cuckoo search algorithm optimizing neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微波加热是一种与被加热物直接相互作用的选择性加热方式,具有清洁、节能、减排等特点。针对工业物料作为微波加热负载时,其温度非线性变化的特点,以微波工业加热过程中的多维、海量参数为研究对象,基于泛函接神经网络模型提取样本数据的深度特征,提出了一种基于布谷鸟搜索算法,优化BP神经网络的网络参数,建立了以"数据驱动"为手段微波加热工业物料温度模型。仿真实验结果证明了所提出模型的准确性、实时性。

    Abstract:

    Microwave heating, an alternative heating method, can directly interact with objects to be heated. This method will dramatically improve energy utilization rate, which is clean, energy-saving and emission reduction. According to the nonlinear change of temperature when industrial material is used as microwave heating load, regarding the dimensional and mass parameters in microwave industrial heating processes as research objects, and also based on the functional-linked neural network to extract the deep features of sample data, a cuckoo search algorithm is proposed to optimize the parameters of BP neural network, thus establishing the industrial microwave heating temperature prediction model based on the "data driven" method. Simulation results show the accuracy and instantaneity of the temperature prediction model proposed in this paper.

    参考文献
    [1] Yuan Y P. Thermodynamics model based temperature tracking control in microwave heating[J]. Journal of Thermal Science and Technology,2016,11(1): 1-10.
    [2] 陈诚, 周新志, 雷印杰. 基于PSO-BP神经网络的微波加热温度预测研究[J]. 微型机与应用,2015,34(5):68-72. CHEN Chen, ZHOU Xinzhi, LEI Yinjie. Research on microwave heating based on BP neural network optimized by the particle swarm optimization algorithm[J]. Technique and Method,2015,34(5):68-72.(in Chinese)
    [3] 王伟. ANFIS 微波加热过程分段温度预测模型[J]. 智能系统学报,2016,11(1):61-69. WANG Wei, ZHOU Xinzhi. Temperature-sectioned prediction model for microwave heating process based on adaptive network-based fuzzy inference system[J]. Transactions on Intelligent Systems,2016,11(1):61-69.(in Chinese)
    [4] 范志刚, 邱贵宝. 基于BP神经网络的高炉焦比预测方法[J]. 重庆大学学报(自然科学版),2002,25(6): 85-88. FAN Zhigang, QIU Guibao. Blast furnace coke ratio prediction based on BP neural network[J]. Journal of Chongqing University(Natural Science Edition),2002,25(6): 85-88.(in Chinese)
    [5] 周杰. BP神经网络和遗传算法用于曲轴填充性能的优化设计[J]. 重庆大学学报,2012,35(5): 53-56. ZHOU Jie. BP neural network and genetic algorithm for the filling properties optimization of crankshaft[J]. Journal of Chongqing University,2012,35(5): 53-56.(in Chinese)
    [6] Yang Y L, Jyh Y C, Lin C T. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network[J].IEEE,2013:38-40.
    [7] Steele N C, Tabor J H. On parity problems and the functional-link artificial neural network[J]. Priory Street: Coventry Universit,1994.
    [8] 付志红. 采用BP神经网络的基波高精度检测方法[J].重庆大学学报,2011,34(12):61-66. FU Zhihong. A high precision detecting method for fundamental using BP neural network[J]. Journal of Chongqing University,2011,34(12):61-66.(in Chinese)
    [9] 杨忠平. 改进BP算法在城市土壤环境质量评价模型的应用[J].重庆大学学报,2010,33(2):98-109. YANG Zhongping. Environmental quality assessment model of urban soils based on improved BP algorithm[J]. Journal of Chongqing University,2010,33(2):98-109.(in Chinese)
    [10] Yang X S. Metaheuristic optimization: nature-inspired algorithms and applications[M]. Teddington:National Physical Laboratory,2013.
    [11] 郑洪清. 一种自适应步长布谷鸟搜索算法[J]. 计算机工程与应用,2013, 49(10):68-71. ZHEN Hongqing. Self-adaptive step cuckoo search algorithm[J]. Computer Engineering and Applications,2013,49(10):68-71.(in Chinese)
    [12] Yang X S, Deb S. Cuckoo search via Levy flight[J]. Proceeding of World Congress on Nature & BiologicallyInspired Computing,2009,(30):210-214.
    [13] Viacheslav V. Saenko. The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model[J]. Physica A: Statistical Mechanics and its Applications,2016,444.
    [14] Patra J C, Pal R N. A functional link artificial neural network for adaptive channel equalization[J]. Signal Processing,1995, 43(2):181-195.
    [15] Sanger T D. A tree-structured adaptive network for function approximation in high-dimensional spaces[J]. IEEE Transactions on Neural Networks,1991,2(2):285-293.
    [16] Pao Y H, Phillips S M, Sobajic D J. Neural net computing and intelligent control systems[J]. International Journal of Control,1992, 56(2):263-289.
    [17] Majhi R, Panda G, Sahoo G. Development and performance evaluation of FLANN based model for forecasting of stock markets[J]. Expert Systems with Applications,2009,36(3):6800-6808.
    [18] Marra F, Bonis M V D, Ruocco G. Combined microwaves and convection heating: A conjugate approach[J]. Journal of Food Engineering,2010,97(1):31-39.
    [19] Farag S, Sobhy A, Akyel C, et al. Temperature profile prediction within selected materials heated by microwaves at 2.45GHz[J]. Applied Thermal Engineering,2012,36(1):360-369.
    [20] Yuan Y, Liang S, Zhong J, et al. Black box system identification dedicated to a microwave heating process[C]//Control and Decision Conference. IEEE,2015.
    [21] Akkari E, Chevallier S, Boillereaux L. A 2D non-linear "grey-box" model dedicated to microwave thawing: Theoretical and experimental investigation[J]. Computers & Chemical Engineering,2005,30(2):321-328.
    [22] Hung W M, Hong W C. Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting[J]. Control & Cybernetics,2009,38(3):863-891.
    [23] Bakar S Z B A, Ghazali R B, et al. Implementation of modified cuckoo search algorithm on functional link neural network for temperature and relative humidity prediction[J]. Lecture Notes in Electrical Engineering,2014,285:151-158.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许磊,赵友金.基于布谷鸟搜索神经网络的微波加热温度预测模型[J].重庆大学学报,2017,40(3):76-87.

复制
分享
文章指标
  • 点击次数:1100
  • 下载次数: 1108
  • HTML阅读次数: 1013
  • 引用次数: 0
历史
  • 收稿日期:2016-10-12
  • 在线发布日期: 2017-04-01
文章二维码