脉冲电流烧结Al2O3颗粒的广义热弹性分析
作者:
基金项目:

重庆市自然科学基金资助项目(cstc2012jjA00009);中央高校基础研究基金项目(CDJZR14335501,CDJZR13240077)。


Thermoelastic analysis of Al2O3 powder in pulse electric current sintering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脉冲电流烧结过程的颈部形成机理,特别是非导电粉末材料,是需要着重研究的核心问题。以非导电Al2O3粉末为研究对象,引入L-S(Lord and Shulman)型广义热弹性方程,初步探究烧结初期非导电粉末颈部局部高温形成以及快速烧结机理。利用Comsol Multiphysics模拟得到脉冲电流烧结过程中颗粒内部的温度场和应力场分布以及烧结颈部的化学势和空位浓度变化规律。数值结果表明,热以波的形式在烧结颈部产生叠加,形成局部高温。化学势变化表明:烧结初期表面扩散占主要作用,空位浓度差的突变使烧结颈部产生局部空位浓度梯度,促进烧结颈长过程,缩短烧结时间。

    Abstract:

    The neck growth mechanism of pulse electric current sintering (PECS), especially for non-conductive powder, is a key problem to study. In this paper, the rapid sintering mechanism and local high temperature of the neck at the initial stage in pulse electric current sintering was investigated for non-conductive Al2O3 powders based on the L-S (Lord and Shulman) generalized thermoelastic theory. The Comsol Multiphysics was applied to numerically simulate temperature, stress distribution, and the chemical potential and the vacancy concentration of sintering neck. The results show that the heat propagated with a finite velocity, and superposition was produced at sintering neck, so local high temperature generates. The chemical potential on the edge and center of sintering neck shows that surface diffusion is main diffusion mechanism. Local vacancy concentration gradient is present on the sintering neck, promoting the sintering process and reducing the sintering time.

    参考文献
    [1] 白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-223. BAI Ling, GE Changchun, SHEN Weiping. Spark plasma sintering technology[J]. Powder Metallurgy Technology, 2007, 25(3):217-223. (in Chinese)
    [2] Tokita M. Spark plasma sintering(SPS) method,systems,and applications[M]// Handbook of Advanced Ceramics. 2013: 1149-1177.
    [3] Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Materials Seienee Forum, 1999(308/309/310/311): 83-88.
    [4] Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge[J]. Scripta Materialia, 2014, 81(11): 56-59.
    [5] Chen F, Yang S, WU J Y, et al. Spark plasma sintering and densification mechanisms of conductive ceramics under coupled thermal/electric fields[J]. Journal of the American Ceramic Society, 2015, 98(3): 732-740.
    [6] Wang S W, Chen L D, Kang Y S, et al. Effect of plasma activated sintering (PAS) parameters on densification of copper powder[J]. Materials Research Bulletin, 2000, 35(4): 619-628.
    [7] Wang S W, Chen L D, Hirai T. Densification of Al2O3 powder using spark plasma sintering[J]. Journal of Materials Research, 2000, 15(4): 982-987.
    [8] 果世驹.粉末烧结理论[M].北京:冶金工业出版社,2007. GUO Shiju.Powder metallurgy sintering theory[M]. Beijing: Metallurgical Industry Press, 2007. (in Chinese)
    [9] 程远方,果世驹,赖和怡.烧结理论进展-1.烧结单元模型建立方法之比较[J].粉末冶金技术,1999,17(3):216-221. CHENG Yuanfang, GUO Shiju, LAI Heyi. Theoretical modelling progress-1. The comparison of the unit model for the first stage of gravity sintering[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221. (in Chinese)
    [10] 田晓耕,沈亚鹏. 广义热弹性问题研究进展[J].力学进展,2012,42(1):18-28. TIAN Xiaogeng, SHEN Yapeng. Research progress in generalized thermo-elastic problems[J]. Advances in Mechanics, 2012, 42(1): 18-28. (in Chinese)
    [11] Roetzel W, Putra N, Das S K. Experiment and analysis for non-fourier conduction in materials with non-homogeneous inner structure[J]. International Journal of Thermal Sciences, 2003, 42(6): 541-552.
    [12] Tian X G, Shen Y P, Chen C Q, et al. A direct finite element method study of generalized thermoelastic problems[J]. International Journal of Solids and Structures, 2006, 43: 2050-2063.
    [13] Strunin D V, Melnik R V N, Roberts A J. Coupled thermomechanical waves in hyperbolic thermoelasticity[J]. Journal of Thermal Stresses, 2001, 24(2): 121-140.
    [14] Kumar K, Tamma, Zhou X M. Macroscale and microscale thermal transport and thermo-mechanical interactions:some noteworthy prespectives[J]. Journal of Thermal Stresses, 1998, 21(3/4): 405-449.
    [15] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Guangxi University for Nationalities, 2007, 15(5): 299-309.
    [16] 吴艳青,黄风雷.粉末热压扩散与应力场耦合的力学模型[J].力学学报,2008,40(4):550-556. WU Yanqing, HUANG Fenglei. A powder compaction mechanical model for diffusion coupled with stress field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 550-556. (in Chinese)
    [17] Taymaz I, Mimaroglu A, Avci E, et al. Comparison of thermal stresses developed in Al2O3±SG, ZrO2±(12%Si+Al) and ZrO2±SG thermal barrier coating systems with NiAl, NiCrAlY and NiCoCrAlY interlayer materials subjected to thermal loading[J]. Surface and Coatings Technology, 1999, 116: 690-693.
    [18] 张龙,张晓敏,褚钟祥.基于非Fourier热传导的Al2O3颗粒烧结的三维广义热弹性分析[C]//中国计算力学大会2014暨钱令希计算力学奖颁奖大会,2014. ZHANG Long, ZHANG Xiaomin, CHU Zhongxiang. Study on Three-dimensional Generalized Thermoelastic Analysis of Al2O3 Powder Sintering Sintering Based on Non-Fourier Heat Conduction[C]//CCCM, 2014.
    [19] 程远方,果世驹,赖和怡.烧结理论研究进展-2.烧结初期多种扩散机制耦合作用的烧结模型[J].粉末冶金技术,1999,17(4):257-263. CHENG Yuanfang, GUO Shiju, LAI Heyi. Theoretical modelling progress-2. Coupling model of multiple sintering mechanisms for the initial stage sintering[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张龙,张晓敏,褚钟祥,彭松.脉冲电流烧结Al2O3颗粒的广义热弹性分析[J].重庆大学学报,2017,40(4):18-23.

复制
分享
文章指标
  • 点击次数:1261
  • 下载次数: 1279
  • HTML阅读次数: 624
  • 引用次数: 0
历史
  • 收稿日期:2016-10-02
  • 在线发布日期: 2017-05-08
文章二维码