基于行人动力学模型的人桥竖向动力相互作用
作者:
基金项目:

国家自然科学(51508257,51578274);教育部长江学者创新团队项目(IRT13068);甘肃省高等学校科研项目(2015B-34)。


Pedestrian-bridge dynamic interaction in the vertical based on biodynamic model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于行人动力学模型,研究了人桥竖向动力相互作用。行人动力学模型采用以行人步频和体重表示的刚度质量阻尼(SMD)模型,人行桥假定为Euler-Bernoulli梁模型,建立人桥竖向动力相互作用控制方程。采用状态空间法进行非比例阻尼系统瞬时模态的求解,得到系统的时变频率和阻尼比;利用变步长四阶五级Runge-Kutta-Felhberg算法求解时变控制方程,对比分析考虑人桥竖向动力相互作用和只在人行荷载作用下人行桥的动力响应。结果表明:考虑人桥动力相互作用,人行桥自振频率略有降低,阻尼有显著增大;当行人以人行桥的频率行走时,考虑人桥竖向动力相互作用结构的动力响应比不考虑人桥相互作用显著降低。

    Abstract:

    The vertical dynamic interaction of pedestrian-bridge is studied by using biodynamic model. The biodynamic model adopts the stiffness-mass-damping (SMD) model expressed by pedestrian's step frequency and weight, under the assumption that the foot bridge is of Euler-Bernoulli model, and the control equation of pedestrian-bridge dynamic interaction in the vertical is established. The state-space method is used to solve the instantaneous model of non-proportionally damped system, and the time-varying frequency and damping ratio are obtained. The time-varying control equation is determined by using variable step four-level-five-order Runge-Kutta-Felhberg algorithm, and the dynamic responses of pedestrian bridge were compared with considering pedestrian-bridge vertical dynamic interaction and under the action of the pedestrian load. The calculated results show that with considering the pedestrian-bridge dynamic interaction in the vertical, the frequency of the foot bridge is lowered slightly, and the damping is increased significantly. When pedestrians walk at the frequency of foot bridge, the dynamic response with considering the Pedestrian-bridge dynamic interaction in the vertical should be obviously lower than that without considering pedestrian-bridge interaction.

    参考文献
    [1] Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation[J]. Engineering Structures, 2007, 29(6): 942-954.
    [2] 冯鹏, 金飞飞, 叶列平, 等. 人行天桥结构振动舒适度定量化与振动特性实测研究[J]. 振动工程学报, 2013, 26(4): 545-553. FENG Peng, JING Feifei, YE Lieping, et al. Quantification of pedestrian's comfort level and dynamic properties of footbridge vibration based on in-situ measurement[J]. Journal of Vibration Engineering, 2013, 26(4): 545-553. (in Chinese)
    [3] Caetano E, CunhaÁ, Moutinho C, et al. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers[J]. Engineering Structures, 2010, 32(4): 1082-1091.
    [4] BS Institute. Steel, concrete and composite bridges. Specification for loads, BS 5400: Part 2[M]. London: British Standard Institution, 1978.
    [5] da Silva F T, Brito H M B F, Pimentel R L. Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges[J]. Canadian Journal of Civil Engineering, 2013, 40(12): 1196-1204.
    [6] 王海, 周叮, 王曙光. 人梁相互作用动力学模型研究[J]. 工程力学, 2010, 27(5): 14-20. WANG Hai, ZHOU Ding, WANG Shuguang. Modeling of the dynamicinteraction of human occupants and beam[J]. Engineering Mechanics, 2010, 27(5): 14-20. (in Chinese)
    [7] 何卫, 谢伟平, 刘隆. 人板耦合系统动力特性研究[J]. 工程力学, 2013, 30(1): 295-300 HE Wei, XIE Weiping, LIU Long. Study on dynamic characteristics of human-floor interaction system[J]. Engineering Mechanics, 2013, 30(1): 295-300. (in Chinese)
    [8] 李红利, 陈政清. 人桥竖向动力相互作用效应理论与试验研究[J]. 土木工程学报, 2014, 47(6): 78-87 LI Hongli, CHEN Zhengqing. Analytical and experimental study on vertically dynamic interaction between human and bridge[J]. China Civil Engineering Journal, 2014, 47(6): 78-87. (in Chinese)
    [9] 秦敬伟, 杨庆山. 基于双足步行模型和反馈机制的人体-结构相互作用[J]. 建筑结构学报, 2014, 35(s1): 18-24 QIN Jingwei, YANG Qingshan. Human-structure interaction based on bipedal walking model and feedback mecha-nism[J]. Journal of Building Structures, 2014, 35(s1): 18-24. (in Chinese)
    [10] Kim S H, Cho K I, Choi M S, et al. Development of human body model for the dynamic analysis of footbridges under pedestrian induced excitation[J]. International Journal of Steel Structures, 2008, 8(4): 333-345.
    [11] Silva F T, Pimentel R. Biodynamic walking model for vibration serviceability of footbridges in vertical direction[C]//EURODYN 2011 Proceedings of the 8th International Conference on Structural Dynamics. Leuven, Belgium. 2011: 1090-1096.
    [12] Pfeil M, Amador N, Pimentel R, et al. Analytic-numerical model for walking person-footbridge structure interaction[C]//Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal. Portugal: [s. n. ], 2014: 1079-1085.
    [13] Dang H V, Živanović S. Modellingpedestrian interaction with perceptibly vibrating footbridges[J]. FME Transactions, 2013, 41(4): 271-278.
    [14] Kerr S C, Bishop N W M. Human induced loading on flexible staircases[J]. Engineering Structures, 2001, 23(1): 37-45.
    [15] Juang J N. Applied system identification[M]. Englewood Cliffs, NJ, USA: Prentice Hall, 1994.
    [16] Živanović S. Probability-based estimation of vibration for pedestrian structures due to walking[D]. Sheffield, England: The University of Sheffield, 2006.
    [17] Ellis B R. Human-structure interaction in vertical vibrations[J]. Proceedings of the ICE-Structures and Buildings, 1997, 122(1): 1-9.
    [18] Gomez D, Silva C E, Dyke S J, et al. Interactiveplatform to include human-structure interaction effects in the analysis of footbridges[M]//Caicedo J, Pakzad S. Dynamics of Civil Structures, Volume 2. [S. l. ]: Springer International Publishing, 2015: 59-65.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张琼,南娜娜,朱前坤,杜永峰.基于行人动力学模型的人桥竖向动力相互作用[J].重庆大学学报,2017,40(4):93-100.

复制
分享
文章指标
  • 点击次数:784
  • 下载次数: 1506
  • HTML阅读次数: 764
  • 引用次数: 0
历史
  • 收稿日期:2016-11-01
  • 在线发布日期: 2017-05-08
文章二维码