基于图的流行排序的视觉跟踪
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金资助项目(61374128,41173106,41373095);安徽省科技攻关计划(1501zc04048);安徽省教育厅自然科学研究产学研重点项目(KJ2014A247);宿州学院智能信息处理实验室开放课题资助(2016ykf13)。


Graph-based manifold ranking for visual tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了克服基于检测的目标跟踪中的模型漂移问题,在基于检测的目标跟踪框架下提出一种新的基于图的流行排序的目标跟踪方法。该方法能够抑制在跟踪过程中目标变形、尺度变化以及遮挡等带来的背景信息的影响。首先,把目标矩形框划分为不重叠的图像块,构造一个k-正则图,即以这些图像块为图结点,构造k-正则图,边权定义为结点之间的底层特征的相似性。其次,为每一个图像块分配一个权重,用于表示该图像块在目标表达中的重要性,以此抑制背景信息的干扰,并通过半监督的方式进行计算。特别初始化一些背景或目标图像块,设其权重为1,其他为0,通过流行排序算法计算所有图像块属于背景或目标的权重。此外,使用多尺度特征金字塔的方法处理跟踪过程中的目标尺度变化,同时提高了初始图像块的可靠性。最后,把所有图像块的底层特征进行加权,连接成一个向量,作为矩形框的特征表达,并使用结构化输出(Struck)算法进行跟踪。在几个公共视频序列上进行了实验,结果表明,研究方法的跟踪性能极大地超过了其他跟踪方法。

    Abstract:

    This paper proposes a novel object tracking approach via graph-based manifold ranking to handle the model drift problem in the tracking-by-detection framework. The proposed approach can suppress the effects of background information caused by object deformation, scale variation and occlusion in object tracking. First, we partition the target bounding box into non-overlapping image patches, and take these image patches as graph nodes to construct k-regular graph, in which the edge weight between two neighbor nodes are measured by the distance of their low-level features. Second, we assign each patch with a weight describing the importance in representing the object, and compute it in a semi-supervised way. In particular, we initialize some patches as object patches with the weights 1, and remaining patches with the weights 0. The graph-based manifold ranking is then performed to obtain the weights of all patches. Moreover, we propose to determine the optimal scale based on multi-scale feature pyramid to address scale adaptation while improving the quality of initial patches in object tracking. Finally, we concatenate all weighted patch descriptors into a vector to represent the bounding box feature, and then integrate it into structure output (Struck) algorithm to carry out object tracking. Experimental results on several public video sequences suggest that the proposed method significantly outperforms other tracking methods.

    参考文献
    相似文献
    引证文献
引用本文

邱慧丽,宋启祥,赵楠.基于图的流行排序的视觉跟踪[J].重庆大学学报,2017,40(7):43-51.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-02-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-08-01
  • 出版日期:
文章二维码