量子遗传算法在永磁同步轮毂电机优化设计中的应用
作者:
中图分类号:

TM341

基金项目:

国家高技术研究发展计划("863"计划)项目(2012AA111803);重庆市科委攻关项目(CSTC,2010AA6039);重庆市研究生科研创新项目资助(CYS15034)。


Application of quantum genetic algorithm to the optimum design of permanent magnet synchronous in-wheel motor
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    量子遗传算法具有种群规模小而不影响算法性能、收敛速度快和全局搜索能力强等优点。为了获得高功率密度和低成本的电动车用轮毂电机,基于量子遗传算法,针对研究设计的一种外转子永磁同步轮毂电机,以电机有效质量、材料成本和功率损耗为优化目标,建立了包含8个设计变量和5个约束的数学模型,对电机进行优化设计。研究结果表明:永磁同步轮毂电机有效质量、材料成本和功率损耗降低,效率特性提升,有限元分析结果与量子遗传算法计算结果接近,能满足电动车对驱动轮毂电机的使用要求,因此,量子遗传算法对于轮毂电机优化设计是有效可行的。

    Abstract:

    Quantum genetic algorithm (QGA) has advantages of small population size with good algorithm performance, fast convergent rate and powerful ability of global search. In order to acquire high power density and low cost in-wheel motor of electric vehicle,based on the quantum genetic algorithm, a designed outer-rotor permanent magnet synchronous in-wheel motor model with 8 designed variables and 5 constraints was built to optimize the effective quality, material cost and power consumption. The results show that the effective quality, material cost and power consumption of the motor are decreased and the efficiency of the motor is improved. The results of finite element analysis are close to those calculated by quantum genetic algorithm,which can satisfy the using requirements of driving in-wheel motor electric vehicle. Therefore, the QGA is an effective and feasible algorithm in optimization design of in-wheel motor.

    参考文献
    [1] Aryanezhad M B, Hemati M. A new genetic algorithm for solving nonconvex nonlinear programming problems[J]. Applied Mathematics and Computation. 2008, 199(1):186-194.
    [2] Deep K, Dipti. A self-organizing migrating genetic algorithm for constrained optimization[J]. Applied Mathematics and Computation, 2008, 198(1):237-250.
    [3] Tsoulos I G. Solving constrained optimization problems using a novel genetic algorithm[J]. Applied Mathematics and Computation, 2009, 208(1):273-283.
    [4] 蹇洁,王旭,葛显龙.云自适应遗传算法有能力约束的车辆调度优化[J].重庆大学学报,2013,36(8):40-46. JIAN Jie, WANG Xu, GE Xianlong. Research on capacitated vehicle routing problem with cloud adaptive genetic algorithm[J]. Journal of Chongqing University, 2013, 36(8):40-46. (in Chinese)
    [5] Liu X D, Liu X M. Quantum-inspired genetic algorithm based on phase encoding[C]//International Conference on Natural Computation, July 23-25, 2013, Shenyang, China. IEEE, 2014:444-448.
    [6] Li D W.To solve the job shop scheduling problem with the improve quantum genetic algorithm[C]//2012 Third WRI Global Congress on Intelligent Systems, November 6-8, 2012, Wuhan, China. IEEE, 2013:88-91.
    [7] Shor P W. Algorithms for quantum computation:discrete logarithms and factoring[C]//1994 Proceedings. Symposium on Foundations of Computer Science, November 20-22, 1994, New Mexico, USA. IEEE, 2002:124-134.
    [8] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2):325-328.
    [9] Li D, Zhao J, Zhang H, et al. An Improved Many Worlds Quantum Genetic Algorithm[C]//International Conference on Natural Computation, 15-17 August, 2015, Zhangjiajie, China. IEEE, 2016:210-214.
    [10] 王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. WANG Yuping, LI Yinghua. A novel quantum genetic algorithm for TSP[J]. Chinese Journal of Computers, 2007, 30(5):748-755. (in Chinese)
    [11] 王瑞琪,李珂,张承慧,等.基于多目标混沌量子遗传算法的分布式电源规划[J].电网技术,2011,35(12):183-189. WANG Ruiqi, LI Ke, ZHANG Chenghui, et al. Distributed generation planning based on multi-objective chaotic quantum genetic algorithm[J]. Power System Technology, 2011, 35(12):183-189. (in Chinese)
    [12] Zheng D Y, Mao J L, Guo N, et al. Based on two element neighborhood search quantum genetic algorithm to solve the vehicle scheduling problem[C/OL]//Chinese Control and Decision Conference. 2016[2016-04-20]. DOI:10.1109/CCDC.2016.7531340.
    [13] 黄小庆,杨夯,陈颉,等.基于LCC和量子遗传算法的电动汽车充电站优化规划[J].电力系统自动化,2015,39(17):176-182. HUANG Xiaoqing, YANG Hang, CHEN Jie, et al. Optimal planning of electric vehicle charging stations based on life cycle cost and quantum genetic algorithm[J]. Automation of Electric Power Systems, 2015, 39(17):176-182. (in Chinese)
    [14] 舒红宇,彭来,谢鑫,等.基于遗传算法的电动代步车用轮毂电机优化设计[J].云南大学学报(自然科学版),2011,33(2):147-151. SHU Hongyu, PENG Lai, XIE Xin, et al. Design optimization of electric scooter hub motor based on genetic algorithm[J]. Journal of Yunnan University (Natural Sciences), 2011, 33(2):147-151. (in Chinese)
    [15] 史峰,郁磊,王辉.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011. SHI Feng, YU Lei, WANG Fei. Thirty case studies of MATLAB Intelligent algorithm[M]. Beijing:Beihang University Press, 2011. (in Chinese)
    [16] 梁昌勇,柏桦,蔡美菊,等.量子遗传算法研究进展[J].计算机应用研究,2012,29(7):2401-2405. LIANG Changyong, Bo Hua, CAI Meiju, et al. Advances in quantum genetic algorithm[J]. Application Research of Computers, 2012, 29(7):2401-2405. (in Chinese)
    [17] 魏巍.无刷直流电动机优化设计的研究[D].上海:上海海事大学,2007. WEI Wei. The optimization design of brushless DC motor[D]. Shanghai:Shanghai Maritime University, 2007. (in Chinese)
    [18] 李立毅,唐勇斌,刘家曦,等.多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J].中国电机工程学报,2013,33(15):69-77. LI Liyi, TANG Yongbin, LIU Jiaxi, et al. Application of the multiple population genetic algorithm in optimum design of air-core permanent magnet linear synchronous motors[J]. Proceedings of the CSEE, 2013, 33(15):69-77. (in Chinese)
    [19] Andersen S B, Santos I F. Evolution strategies and multi-objective optimization of permanent magnet motor.[J]. Applied Soft Computing Journal, 2012, 12(2):778-792.
    [20] Shabanian A, Tousiwas A A P, Pourmandi M, et al. Optimization of brushless direct current motor design using an intelligent technique[J]. ISA Transactions, 2015, 57:311-321.
    [21] Rahideh A, Korakianitis T, Ruiz P, et al. Optimal brushless DC motor design using genetic algorithms[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(22):3680-3687.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张羽,邓兆祥,张河山,陶胜超,唐蓓.量子遗传算法在永磁同步轮毂电机优化设计中的应用[J].重庆大学学报,2017,40(8):1-8.

复制
分享
文章指标
  • 点击次数:1085
  • 下载次数: 1403
  • HTML阅读次数: 479
  • 引用次数: 0
历史
  • 收稿日期:2017-02-08
  • 在线发布日期: 2017-09-05
文章二维码