煤中脂肪族硫醚结构氧化过程机理
作者:
中图分类号:

X43

基金项目:

国家自然科学基金资助项目(51274112,51174108);山西省科技重大专项(20111101017)。


Mechanism of the oxidation process of the aliphatic sulfoether structure in coal
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    应用Gaussian 03程序,采用密度泛函(DFT)方法,在B3LYP/6-31G(d,p)水平下研究煤中脂肪族硫醚结构(C6H5CH2SCH3)吸附O2分子及氧化反应过程的能量变化,确定分子间氧化反应机制,为预防煤炭自燃奠定理论基础。由计算结果可知,煤中C6H5CH2SCH3结构物理吸附O2分子形成复合物Ⅰ,形成过程是一个无势垒的过程,在热力学上是稳定的。煤中C6H5CH2SCH3结构与O2分子的相互作用距离dS-O为2.582Å,经CP校正后的相互作用能为-20.60 kJ/mol。分析复合物Ⅰ的电子密度变化,可确定其相互作用为范德华力,属于物理吸附。当复合物Ⅰ吸收足够的能量,将进一步发生化学反应。煤中C6H5CH2SCH3结构氧化反应共有5条反应路径,Path 4是反应的主反应路径,其产物P3(C6H5CH2SOH+CH2O)是反应的主产物。经分析发现:煤中C6H5CH2SCH3结构易发生初步氧化,仅需12.36 kJ/mol的能量,物理吸附一个O2分子释放的能量足以提供,但若要深度氧化将Path 4进行下去,需要再从外界吸收相当于物理吸附5个O2分子释放的能量。

    Abstract:

    The energy change generated from aliphatic sulfoether structure (C6H5CH2SCH3) in coal adsorbing O2 and oxidation was studied by using Gaussian 03 program and density functional theory (DFT) method at the B3LYP/6-31G (d, p) level, and the oxidation mechanism was analyzed to provide theoretical basis for preventing coal spontaneous combustion. The results show that the energy of complex Ⅰ formed from C6H5CH2SCH3 structure in coal adsorbing O2 is the local least, and the formation is a stable no barrier process in thermodynamics. The interaction distance dS-O between C6H5CH2SCH3 structure in coal and O2 is 2.582 Å, and the interaction energy is -20.60 kJ/mol after CP correction. Analyzing the electron density change of complex Ⅰ shows the interaction is Van der Waals forces, which belongs to physical adsorption. The complex Ⅰ will react when it absorbs enough energy. There are five reaction paths in oxidation reaction of C6H5CH2SCH3 structures in coal, Path 4 is the main reaction path, and P3 (C6H5CH2SOH+CH2O) is its principal product. The analysis shows that C6H5CH2SCH3 structure in coal is easy to be preliminarily oxidized, only 12.36 kJ/mol energy is needed and the energy of physically absorbing an O2 molecule is enough. But deep oxidation along with Path 4 needs as much as the energy of physically adsorbing 5 O2 molecules.

    参考文献
    [1] Baris K, Kizgut S, Didari V. Low-temperature oxidation of some Turkish coals. Fuel, 2012, 93(1):423-432.
    [2] Fujitsuka H, Ashida R, Kawase M, et al. Examination of low-temperature oxidation of low-rank coals, aiming at understanding their self-ignition tendency. Energy and Fuels, 2014, 4(28):2402-2407.
    [3] 秦汝祥,庞文华,陶远,等. TG实验条件对煤氧化燃烧特性的影响分析.中国安全生产科学技术,2014,10(5):154-158. QIN Ruxiang, PANG Wenhua, TAO Yuan, et al. Effect of TG wxperimental conditions on the oxidative combustion characteristics of coal. Journal of Safety Science and Technology, 2014, 10(5):154-158. (in Chinese)
    [4] 仲晓星,王德明,尹晓丹. 基于程序升温的煤自燃临界温度测试方法.煤炭学报,2010,35(Z1):128-131. ZHONG Xiaoxing, WANG Deming, YIN Xiaodan. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment. Journal of China Coal Society, 2010, 35(Sup1):128-131. (in Chinese)
    [5] Xin H H, Wang D M, Dou G L, et al. The infrared characterization and mechanism of oxygen adsorption in coal. Spectroscopy Letters, 2014, 47(9):664-675.
    [6] 王继仁,邓存宝,邓汉忠,等.煤表面对氧分子物理吸附的微观机理.煤炭转化,2007, 30(4):18-21. WANG Jiren, DENG Cunbao, DENG Hanzhong, et al. Coal surface physical adsorption to oxygen molecules mechanism. Coal Conversion, 2007, 30(4):18-21. (in Chinese)
    [7] 邓存宝,王雪峰,王继仁,等.煤表面含S侧链基团对氧分子的物理吸附机理.煤炭学报,2008,33(5):556-560. DENG Cunbao, WANG Xuefeng, WANG Jiren, et al. Physical adsorption mechanism of coal surface containing sulfur group adsorption to more oxygen molecule. Jounal of China Coal Society, 2008, 33(5):556-560. (in Chinese)
    [8] 刘仲田. 煤对氧分子的吸附机理研究. 阜新:辽宁工程技术大学, 2007. LIU Zhongtian. Coal adsorption to oxygen molecules mechanism research. Fuxin:Liaoning Technical University, 2007. (in Chinese)
    [9] Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel, 2014, 136(6):326-333.
    [10] 戴凤威.煤中含S活性基团与O2的反应机理.阜新:辽宁工程技术大学,2013. DAI Fengwei. Reaction mechanism on S-active groups in coal and O2. Fuxin:Liaoning Technical University, 2013. (in Chinese)
    [11] Frisch M J, Trucks G W, Schlegel H B,et al. Gaussian 03, revision C.02. Journal of Computational Chemistry,2004, 24(14):1748-1757.
    [12] Boys S F, Bernardi F.The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 1970, 100(4):65-73.
    [13] Lu T, Chen F W. Multiwfn:a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33(5):580-592.
    [14] Govind N, Petersen M, Fitzgerald G, et al. A generalized synchronous transit method for transition state location. Computational Materials Science, 2003, 28(2):250-258.
    [15] Malick D K, Petersson G A, Jr J A M. Transition states for chemical reactions I. Geometry and classical barrier height. The Journal of Chemical Physics, 1998, 108(14):5704-5713.
    [16] Bakken V, Helgaker T. The efficient optimization of molecular geometries using redundant internal coordinates. Journal of Chemical Physics, 2002, 117(20):9160-9174.
    [17] Ayala P Y, Schlegel H B. A combined method for determining reaction paths, minima, and transition state geometries. Journal of Chemical Physics, 1997, 107(2):375-384.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓存宝,戴凤威,邓汉忠,王钰博.煤中脂肪族硫醚结构氧化过程机理[J].重庆大学学报,2017,40(8):90-98.

复制
分享
文章指标
  • 点击次数:1126
  • 下载次数: 1333
  • HTML阅读次数: 561
  • 引用次数: 0
历史
  • 收稿日期:2017-01-05
  • 在线发布日期: 2017-09-05
文章二维码