柔性直流馈入下交流输电线路单端故障测距分析
作者:
中图分类号:

TM762

基金项目:

国家自然科学基金资助项目(51407017);国家电网公司科技项目资助(XNFB-201605-FW-07);国家重点研发计划智能电网技术与装备重点专项(2016YFB0900604)。


Performance analysis of single-terminal fault location for transmission lines in an HVDC/AC interconnected power system
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    柔性直流输电具有不同于交流输电和常规直流输电的运行原理和特性,随着柔性直流输电技术的应用,交流电力系统的故障特征可能发生显著变化,基于传统交流系统暂态故障特征量的故障测距面临挑战。为此,基于柔性直流输电的运行原理,分析了柔直交流侧故障时换流器的运行特性,推导了在换流器保护未启动、限流以及闭锁条件下柔直交流侧短路电流解析式,分析比较了柔直不同暂态运行状态下对输电线路单端故障测距的影响规律。结果表明,柔直馈入下交流输电线路单端故障测距受换流器交流侧电压跌落系数和换流器无功功率指令的影响,通过PSCAD/EMTDC仿真验证了理论分析的正确性。

    Abstract:

    The operation principle and characteristics of flexible high voltage direct current (HVDC) is different from conventional AC and DC transmission. With the application of flexible HVDC technology, the fault characteristics of AC power system may change significantly, and the fault location algorithms based on conventional AC power system face challenges. Therefore, based on the operating principle of flexible HVDC, the operation characteristics of converter was analyzed when flexible HVDC/AC side has fault. The analytic expression of short-circuit current in AC side was derived with converter unprotected, current limited and converter blocked. The influencing rules of different transient operating conditions on the performance of single-terminal fault location for transmission lines were analyzed. It is concluded that the performance of single-terminal fault location for transmission lines in an HVDC/AC interconnected power system is influenced by the converter-side voltage dip coefficient and the referenced reactive power of the converter. And the correctness of theoretical analysis is verified by PSCAD/EMTDC simulation.

    参考文献
    [1] Abe M,Otsuzuki N,Emura T,et al. Development of a new fault location system for multi-terminal single transmission lines. IEEE Transactions on Power Delivery,1995,10(1):159-169.
    [2] Kezunovic M. Smart fault location for smart grids[J]. IEEE Transactions on Smart Grid,2011,2(1):11-22.
    [3] 李强,王银乐.高压输电线路的故障测距方法[J].电力系统保护与控制,2009,37(23):192-197. LI Qiang, WANG Yinle. Fault location methods for high voltage power transmission lines[J]. Power System Protection and Control, 2009, 37(23):192-197. (in Chinese)
    [4] 郑秀玉,丁坚勇,黄娜.输电线路单端故障定位的阻抗-行波组合算法[J].电力系统保护与控制,2010,38(6):18-21. ZHENG Xiuyu, DING Jianyong, HUANG Na. Impedance-traveling wave assembled algorithm of one-terminal fault location for transmission lines[J]. Power System Protection and Control, 2010, 38(6):18-21. (in Chinese)
    [5] 冉伊,周步祥,杨植雅,等.一种估算对侧信息的配电网单端故障测距方法[J].电力系统保护与控制,2014,42(18):25-31. RAN Yi, ZHOU Buxiang, YANG Zhiya, et al. A method of single ended fault location for distribution network based on estimated contralateral information[J]. Power System Protection and Control, 2014, 42(18):25-31. (in Chinese)
    [6] 王宾,董新洲,薄志谦.特高压长线路单端阻抗法单相接地故障测距[J].电力系统自动化,2008,32(14):25-29. WANG Bin, DONG Xinzhou, BO Zhiqian. An Impedance Fault Location Algorithm for UHV Long Transmission Lines with Single-line-to-ground Faults[J]. Automation of Electric Power Systems, 2008, 32(14):25-29. (in Chinese)
    [7] Debnath S, Qin J, Bahrani B, et al. Operation, control, and applications of the modular multilevel converter:a review[J]. IEEE Transactions on Power Electronics, 2015, 30(1):37-53.
    [8] Bianchi F D, Egea-alvarez A, Junyent-ferré A, et al. Optimal control of voltage source converters under power system faults[J]. Control Engineering Practice, 2012, 20(5):539-546.
    [9] Shi X, Wang Z, Liu B, et al. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions[J]. IEEE Transactions on Power Electronics, 2015, 30(1):408-421.
    [10] 马世强,余利霞,郑连清. MMC-HVDC交流侧不对称故障特性分析与保护策略[J].华北电力大学学报,2015,42(6):35-42. MA Shiqiang, YU Lixia, ZHENG Lianqing. Characteristics analysis of MMC-HVDC AC asymmetric fault and protection strategy[J]. Journal of North China Electric Power University, 2015, 42(6):35-42. (in Chinese)
    [11] Olowookere O, Skarvelis-kazakos S, Habtay Y, et al. AC fault ride through of modular multilevel converter VSC-HVDC transmission systems[C]//Proceedings of the universities power engineering conference.[S.l.],IEEE, 2015:1-6.
    [12] Zhou Y, Jiang D, Guo J, et al. Analysis and control of modular multilevel converters under unbalanced conditions[J]. IEEE Transactions on Power Delivery, 2013, 28(4):1986-1995.
    [13] 孔明,汤广福,贺之渊,等.不对称交流电网下MMC-HVDC输电系统的控制策略[J].中国电机工程学报,2013,33(28):41-49. KONG Ming, TANG Guangfu, HE Zhiyuan, et al. A control strategy for modular multilevel converter based HVDC of unbalanced AC systems[J]. Proceedings of the CSEE, 2013, 33(28):41-49. (in Chinese)
    [14] 王宾,陆元园.利用多时刻信息的T接线路单相接地故障单端测距方法[J].中国电机工程学报,2016,36(10):2611-2618. WANG Bin, LU Yuanyuan. Single terminal fault location to single-line-to-ground fault in T transmission line based on sequenced time session data[J]. Proceedings of the CSEE, 2016, 36(10):2611-2618. (in Chinese)
    [15] 葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007. GE Yaozhong. Principle and technology of new type of relay protection and fault location[M]. Xi'an:Xi'an jiaotong University Press, 2007. (in Chinese)
    [16] Jovcic D, Lamont L, Abbott K. Control system design for VSC transmission[J]. Electric Power Systems Research, 2007, 77(7):721-729.
    [17] Du C Q, Agneholm E, Olsson G. Use of VSC-HVDC for industrial systems having onsite generation with frequency control[J]. IEEE Transactions on Power Delivery, 2008, 23(4):2233-2240.
    [18] Leon A E, Mauricio J M, Solsona J A, et al. Adaptive control strategy for VSC-Based systems under unbalanced network conditions[J]. IEEE Transactions on Samrt Grid, 2010, 1(3):311-319.
    [19] Du C Q, Bollen M H J, Agneholm E, et al. A new control strategy of a VSC-HVDC system for high-quality supply of industrial plants[J]. IEEE Transactions on Power Delivery, 2007, 22(4):2386-2394.
    [20] 孔祥平,张哲,尹项根,等.含逆变型分布式电源的电网故障电流特性与故障分析方法研究[J].中国电机工程学报,2013,33(34):65-74. KONG Xiangping, ZHANG Zhe, YIN Xianggen, et al. Study on fault current characteristics and fault analysis method of power grid with inverter interfaced distributed generation[J]. Proceedings of the CSEE, 2013, 33(34):65-74. (in Chinese)
    [21] 罗永捷,李耀华,李子欣,等.全桥型MMC-HVDC直流短路故障穿越控制保护策略[J].中国电机工程学报,2016,36(7):1933-1943. LUO Yongjie, LI Yaohua, LI Zixin, et al. DC short-circuit fault ride-through control strategy of full-bridge MMC-HVDC systems[J]. Proceedings of the CSEE, 2016, 36(7):1933-1943. (in Chinese)
    [22] 黄磊,罗伟,杨冠军.舟山多端柔性直流系统交流故障穿越能力分析[J].电气开关,2016,54(3):22-26. HUANG Lei, LUO Wei, YANG Guanjun. AC faults ride-through capability analysis of zhoushan MMC-MTDC system[J]. Electrical Switch, 2016, 54(3):22-26. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余锐,肖超,陈愚,欧阳金鑫,熊俊,熊小伏.柔性直流馈入下交流输电线路单端故障测距分析[J].重庆大学学报,2017,40(9):47-56.

复制
分享
文章指标
  • 点击次数:816
  • 下载次数: 1171
  • HTML阅读次数: 512
  • 引用次数: 0
历史
  • 收稿日期:2016-11-15
  • 在线发布日期: 2017-10-10
文章二维码