无底柱分段崩落法进路宽度的优化确定
作者:
中图分类号:

TD322

基金项目:

国家自然科学基金资助项目(51674049);国家自然科学基金资助项目(51174241)。


Optimization of production drift width in the sub-level caving method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    进路宽度是反映无底柱分段崩落法技术经济效益的重要技术指标,为确定无底柱分段崩落法最优进路宽度,以新疆某铁矿为工程背景,基于随机介质放矿理论、wilson弹塑性理论、FLAC3D数值模型,通过矿柱稳定性分析提出了进路极限宽度公式,并得到该矿的进路极限宽度为7 m。结合技术经济分析,采用最高积分法对7种进路宽度进行优化。优化结果表明,最优进路宽度为6.6 m,除了可获得良好的放矿效果外,还可使每一进路增加60万元收益。该进路宽度综合考虑了安全、技术、经济等因素,既保证了采场的安全性、掘支技术的可行性,又降低了矿石的贫损指标,提高了回采的经济效益,研究成果对矿山生产具有实际指导意义。

    Abstract:

    The width of production drifts has a definitely significant effect on the economic benefits of mines adopting sub-level caving mining operations. In this study, an optimization method has been presented to determine the width of production drifts in sub-level mining, based on the stability analysis of pillar between sub-level drifts using the stochastic medium theory for ore draw, Wilson theory and FLAC3D routine. The case study of an iron mine in Xinjiang, China, shows that the theoretically optimal width for the drifts is 7 m, and this figure is optimized to 6.6 m after a detailed technological and economical investigation of seven various drift widths has been made by using the highest integral method. The optimization results indicate that the effect of ore drawing is good, and the profit for a single drift is increased by 0.6 million Yuan accordingly. This methodology present involves an integrated consideration of safety, practices for driving and supporting drifts and economic benefits in sub-level caving mining, and can be of significance to guide production operations for similar mines.

    参考文献
    [1] William H,Rudolf K. Sublevel caving-past and future[J].Proceedings of 5th International Conference and Exhibition on MassMining,2008:107-132.
    [2] Yu A, Ryzhkov I.AE selection of stope shape in sublevel caving systems[J]. Journal of Mining Science,2002,38(6):596-600.
    [3] 陶干强,任凤玉,任青云,等. 随机介质放矿理论的改进研究[J].采矿与安全工程学报,2010,27(2):239-243. TAO Ganqiang, REN Qengyu, REN Qingyun, et al. Research on improvement of the stochastic medium theory for ore drawing[J]. Journal of Mining & Safety Engineering. 2010, 27(2):239-243.
    [4] 任凤玉. 放矿口对崩落法放矿的影响[J].有色金属,1993,45(4):17-23. REN Fengyu. Influence of draw hole on ore drawing[J]. Nonferrous Metals, 1993,45(4):17-23.
    [5] Stazhevskii S B.Features of flow of broken rock in extraction of ores with sublevel caving[J].Journal of Mining Science,1996,32(5):403-416.
    [6] 陈小伟,眀世祥. 崩落法开采中进路宽度对放出体形态的影响研究[J].金属矿山,2009,11:246-249. CHEN Xiaowei,MING Shi Xiang. Study on the influence of shape of draw bodies with different widths of drift in caving method[J].Metal Mine,2009,11:246-249.
    [7] Castro R.The role of gravity flow in the design and planning of large sublevel stopes[J].Journal of the South African Institution of Mining and Metallurgy,2015,115(2):113.
    [8] 张哲,余一松,刘鹏博.宽进路无底柱分段崩落法物理放矿模拟实验[J].现代矿业,2011,4(4):1-3. ZHANG Zhe, YU Yisong, LIU Pengbo. Wide drift physical drawing simulation experiment in pillarless sublevel caving method[J]. Modern Mining,2011,4(4):1-3.
    [9] Power G,Just G D.A review of sublevel caving current practices[C]//Proceedings of 5th International Conference and Exhibition on MassMining.[S.L.]:IEEE,2008,7(9):154-164.
    [10] 吴秀仪,林玉明,方延强. 无底柱分段崩落法进路极限宽度研究[J].铜业工程,2011,6:18-21. WU Xiuyi, LIN Yuming, FANG Yanqiang. Research on drift limit equilibrium width of non-pillar sublevel caving[J]. Copper Engineering, 2011,6:18-21.
    [11] David J.Computer simulation of the movement of ore and waste in an underground mining pillar[J].The Canadian Mining and Metallurgical,1986,67(2):854-859.
    [12] 陶干强,杨仕教,任凤玉.随机介质放矿理论散体流动参数试验[J].岩石力学与工程学报,2009,9(28):3464-3470. TAO Ganqiang, YANG Shijiao, REN Fengyu. Test on granules flow parame ters of ore drawing width stoch astic medium theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,9(28):3464-3470.
    [13] Tao G P, Yang S J, Ren F Y, et al. Test on granules flow parameters of ore drawing width stochastic medium theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,9(28):3464-3470.
    [14] Sheorey P R,Das M N,Bordia S K,et al.Pillar stress approaches based on a new failure criterion for coal seams[J].International Journal of Mining and Geological Engineering,1986,4(4):273-290.
    [15] Martina C D,Maybeeb W G.The strength of hard-rock pillars[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1):1239-1246.
    [16] 王旭福,黄福昌,张怀新,等.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报, 2002, 27(6):604-608. WANG Xufu,HUANG Fuchang,ZHANG Huaixing, et al.Discussion and improvement for A.H.Wilson coal pillar design[J].Journal of China Coal Society,2002, 27(26):604-608.
    [17] 晏丽,阳生军,刘宝琛,等.水平互层岩体并行隧道中间岩柱稳定性分析[J].岩石力学与工程学报,2009,28(1):2898-2904. YAN Li, YANG ShengJun, ZHANG Xuemin, et al. Stability analysis of middle rock pillar in parallel tunnels in horizontally interbedding rock mass[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1):2898-2904.
    [18] 严锦栋. 应用综合费用法对回风巷道断面进行优化[J].采矿技术,2010,10(60):203-205. YAN Jingdong. The optimization to the air roadway on the method of Comprehensive cost[J]. Mining Technology, 2010,10(60):203-205.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄滚,丁红岗,唐小龙,王满.无底柱分段崩落法进路宽度的优化确定[J].重庆大学学报,2017,40(11):28-36.

复制
分享
文章指标
  • 点击次数:924
  • 下载次数: 1420
  • HTML阅读次数: 535
  • 引用次数: 0
历史
  • 收稿日期:2017-01-10
  • 在线发布日期: 2017-11-14
文章二维码