多轴精密传动实验平台设计及动态特性分析
作者:
中图分类号:

TH132

基金项目:

国家自然科学基金资助项目(51575062,51605049)。


Design and dynamic characteristic analysis of multi-axis precision transmission test platform
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传动实验平台的动态特性对精密减速器测试结果的精度和可靠性有重要影响。以自行研制的新型多轴精密传动实验平台为分析对象,基于赫兹接触理论提出了交叉滚子直线导轨结合部刚度的计算方法;根据交错轴减速器测试的实际工况,利用弹簧单元模拟导轨结合部的接触特性,建立了实验平台在极限位置下的动力学模型;在此基础上利用有限元方法进行了理论模态分析,获得了平台的前4阶固有频率和模态振型;最后通过样机测试对平台的动态特性加以验证,得到平台实际工况下的最大振动速度为0.487 mm/s。结果表明该新型传动实验平台满足精密设备的振动标准,具有良好的动态性能。

    Abstract:

    The dynamic characteristic of transmission test platform has a major impact on the accuracy and reliability of test results for precision reducers. A self-developed multi-axis precision transmission test platform is taken as the research object, and a calculating method of the joint part stiffness of cross roller linear guide way is proposed based on Hertz Contact theory. According to the actual test working state of cross axis reducer, spring unit is applied to simulate the contact characteristic of guide way joint part and the dynamic model of test platform at limit position is established. And then, the theoretical modal analysis is carried out by finite element method and the natural frequencies of the first 4 steps and modal shapes of the platform are obtained. Finally, the dynamic characteristic of test platform is verified by sample testing. The maximum vibration velocity of platform under actual working state is 0.478 mm/s. The results show that this new transmission test platform has excellent dynamic performance and it can satisfy the vibration criterion of precision equipments.

    参考文献
    [1] Matthew J B, Richard M S, Jeremy J K, et al. An uncertainty analysis of tool setting methods for a precision lathe with a B-axis rotary table[J]. Precision Engineering, 2010, 34(2):242-252.
    [2] Ulu N G, Ulu E, Cakmakci M. Design and analysis of a modular learning based cross-coupled control algorithm for multi-axis precision positioning systems[J]. International Journal of Control, Automation and Systems, 2016, 14(1):272-281.
    [3] Ulu N G, Ulu E, Cakmakci M. Learning based cross-coupled control for multi-axis high precision positioning systems[C]//Dynamic Systems and Control Conference Joint with the Jsme 2012, Motion and Vibration Conference., Fort Lauderdale, Florida, USA, October 17-19. 2012:535-541.
    [4] 彭玉海,白海清,何宁. 基于PMAC的数控试验台研究与开发[J].陕西理工学院学报,2008,24(2):34-36. PENG Yuhai, BAI Haiqing, HE Ning. Study and development of NC test platform based on PMAC[J]. Journal of Shanxi University of Technology, 2008, 24(2):34-36. (in Chinese)
    [5] 蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2010,46(1):92-99. JIANG Shuyun, ZHUShulong. Dynamic characteristic parameters of linear guideway joint with ball screw[J]. Chinese Journal of Mechanical Engineering, 2010, 46(1):92-99. (in Chinese)
    [6] Wu J S S, Chang J C, Hung J P. The effect of contact interface on dynamic characteristics of composite structures[J]. Mathematics and Computers in Simulation, 2007, 74(6):454-467.
    [7] 朱坚民,张统超,李孝茹.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2015,51(17):72-82. ZHU Jianmin, ZHANG Tongchao, LI Xiaoru. Dynamic characteristic analysis of ball screw feed system based on stiffness characteristic of mechanical joints[J]. Chinese Journal of Mechanical Engineering, 2015, 51(17):72-82. (in Chinese)
    [8] Vicente D A, Hecker R L, Villegasv F J, et al. Modeling and vibration mode analysis of a ball screw drive[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1/2/3/4):257-265.
    [9] Hazimeh R, Challita G, Khalil K, et al. Finite element analysis of adhesively bonded composite joints subjected to impact loadings[J]. International Journal of Adhesion & Adhesives, 2014, 56:24-31.
    [10] Zhang Jingrui, Guo Zixi, Zhang Yao. Dynamic characteristics of vibration isolation platforms considering the joints of the struts[J]. Acta Astronautica, 2016, 126:120-137.
    [11] LIU Yanjie, SONG Lei, LIU Niuniu. Modeling and parameters identification of the cross roller guide way[C]//International Conference on Mechatronics and Automation, 5-8 Aug, 2012, Chengdu, China[S.l.]:IEEE, 2012:692-696.
    [12] 宋磊.超高加速精密运动平台的动态设计与优化[D].哈尔滨:哈尔滨工业大学,2012. SONG Lei. Dynamic design and Optimization of high Acceleration and high precision motion platform[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
    [13] 李要芳,李锻能,刘智,等.采用静压导轨的硬切削车床十字滑台刀架动刚度分析[J].机械设计与制造,2013(5):143-145. LI Yaofang, LI Duanneng, LIU Zhi, et al. Dynamic stiffness analysis of cross platform on using hydrostatic guide-way hard turning machine tool[J]. Machine Design & Manufacture, 2013(5):143-145. (in Chinese)
    [14] 林腾蛟,宋建军,孟令宽,等.风电增速齿轮箱动力学性能优化方法[J].重庆大学学报,2016,39(4):16-23. LIN Tengjiao, SONG Jianjun, MENG Lingkuan, et al. A dynamic behavior optimization method of wind power speed-increase gearbox[J]. Journal of Chongqing University, 2016, 39(4):16-23. (in Chinese)
    [15] 林腾蛟,郭进,刘波,等.风电增速箱结合部刚度分析及振动噪声预估[J].重庆大学学报,2015,38(1):87-94. LIN Tengjiao, GUO Jin, LIU Bo, et al. Junction stiffness analysis and vibration noise prediction of wind power speed-increase box[J]. Journal of Chongqing University, 2015, 38(1):87-94. (in Chinese)
    [16] 刘衍,汪劲松,赵彤,等.滚珠丝杠传动系统的刚度模型[J].清华大学学报(自然科学版),2011,51(5):601-606. LIU Yan, WANG Jingsong, ZHAO Tong, et al. Stiffness model for a ball screw drive system[J]. Journal of Tsinghua University(Science and Technology), 2011, 51(5):601-606. (in Chinese)
    [17] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003:245-248. LIAO Boyu, ZHOU Xinmin, YIN Zhihong. Modern mechanical dynamics and its engineering applications[M]. Beijing:China Machine Press, 2003:245-248. (in Chinese)
    [18] Harris T A, Kotzalas M N. Rolling Bearing Analysis[M]. Suite:CRC Press, 2010:124-132.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏波,陈永洪,梁栋,陈兵奎.多轴精密传动实验平台设计及动态特性分析[J].重庆大学学报,2017,40(12):8-15,34.

复制
分享
文章指标
  • 点击次数:921
  • 下载次数: 1591
  • HTML阅读次数: 580
  • 引用次数: 0
历史
  • 收稿日期:2017-07-02
  • 在线发布日期: 2018-01-03
文章二维码