CaF2强化红土镍矿自还原过程中金属相聚集长大行为
作者:
中图分类号:

TF556

基金项目:

国家自然科学基金资助项目(51404173)。


Promoting effects of CaF2 on the aggregation and growth of metal phases in self-reduction of laterite nickel ore
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对高镁高硅型中低品位红土镍矿,采用煤基自还原-细磨-磁选工艺制备镍铁粉,研究了内配碳比对红土镍矿中铁、镍氧化物自还原的影响,CaF2对红土镍矿自还原过程中氧化物的还原、金属相的析出及聚集长大的影响规律。研究表明在CaF2作用下通过降低内配碳比可抑制氧化铁的还原,从而获得镍品位较高的镍铁粉,但相应牺牲镍的回收率;CaF2能与红土镍矿中高熔点的硅酸盐脉石通过固相反应生成低熔点的透闪石(Ca2Mg5(Si4O112F2),使硅酸盐矿物结构由岛状转变为链状,提高硅酸盐矿物反应活性,促进镍、铁氧化物的还原;通过降低红土镍矿脉石相的熔化性温度,CaF2能明显强化红土镍矿自还原过程中金属相的析出、聚集和长大,促进镍铁与脉石的有效分离,从而大幅度提高镍铁粉中镍和铁的品位及金属元素的回收率。

    Abstract:

    In view of low-grade laterite nickel ore including high magnesium and silicon, the process of coal-based self-reduction, grinding and magnetic separation is utilized to produce ferronickel powders. The effects of C/O atomic ratio on the self-reduction of iron oxides and nickel oxides are investigated, as well as the influences of CaF2 on the reduction of oxides and the precipitation, aggregation and growth of metal phases in the self-reduction. The results show that under the action of CaF2, the reduction of iron oxides can be suppressed by reducing the C/O atomic ratio to obtain ferronickel powders in high-grade nickel but the recovery rate of nickel will be decreased. The low melting point tremolite(Ca2Mg5(Si4O11)2F2) is generated from the solid-state reaction between CaF2 and silicate gangue with high melting point, which can make the silicate minerals transform from island structure to chain structure, increase the reactivity of silicate minerals and then promote the reduction of nickel oxides and iron oxides. With the addition of CaF2, the melting temperature of laterite nickel ore gangue can be decreased. In that case, the precipitation, aggregation and growth of metal phases can be strengthened in self-reduction and then the separation of metal and gangue can be promoted. Accordingly, the grade of nickel and iron in ferronickel powders and the recovery rate of metal elements are improved significantly.

    参考文献
    [1] Patzelt N, Schmitz T, Grund G. Treatment of nickel ores in rotary kilns and cyclone reactors[C]//Proceedings of International Laterite Nickel Symposium. New York,2004:527-543.
    [2] LV X W, Bai C G, He S P, et al. Mineral change of Philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter[J]. ISIJ International,2010,50(3):380-385.
    [3] LV X W, Bai C G, Qiu G B, et al. Dehydrating and sintering of Philippine nickel laterite[J]. Canadian Metallurgical Quarterly, 2011,50(1):20-27.
    [4] Li B, Wang H, Wei Y G. The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidization method[J]. Minerals Engineering,2011,24(14):1556-1562.
    [5] Kursunoglu S, Kaya M. Atmospheric pressure acid leaching of Caldag lateritic nickel ore[J]. International Journal of Mineral Processing,2016(150):1-8.
    [6] Landers M, Grafe M, Gilkes R J, et al. Nickel distribution and speciation in rapidly dehydroxylated goethite in oxide-type lateritic nickel ores:XAS and TEM spectroscopic(EELS and EFTEM) investigation[J]. Australian Journal of Earth Sciences An International Geoscience Journal of the Geological Society of Australia,2011,58(7):745-765.
    [7] 刘继军,胡国荣,彭忠东.红土镍矿处理工艺的现状及发展方向[J].稀有金属与硬质合金,2011,39(3):62-66. LIU Jijun, HU Guorong, PENG Zhongdong. The latest and future development of laterite nickel ore processing technology[J]. Rare Metals and Cemented Carbides,2011,39(3):62-66.(in Chinese)
    [8] 郭学益,吴展,李栋,等.红土镍矿常压盐酸浸出工艺及其动力学研究[J].矿冶工程,2011,31(4):69-76. GUO Xueyi, WU Zhan, LI Dong, et al. Atmospheric leaching of nickel laterite by hydrochloride acid and its kine-tics[J]. Mining and Metallurgical Engineering,2011,31(4):69-76.(in Chinese)
    [9] 林重春,张建良,黄冬华,等.红土镍矿含碳球团深还原-磁选富集镍铁工艺[J].北京科技大学学报,2011,33(3):270-275. LIN Chongchun, ZHANG Jianliang, HUANG Donghua, et al. Enrichment of nickel and iron from nickel laterite ore/coal composite pellets by deep reduction and magnetic separation[J]. Journal of University of Science and Technology Beijing,2011,33(3):270-275.(in Chinese)
    [10] 黄希祜.钢铁冶金原理[M].4版.北京:冶金工业出版社,2002. HUANG Xihu. Principles of steel metallurgy[M]. 4th ed.Beijing:The Metallurgical Industry Press,2013.(in Chinese)
    [11] 赵栋楠.碱性内配碳团块高温自还原制备金属铁粒的基础研究[D].武汉:武汉科技大学,2012. ZHAO Dongnan. Fundamental research on self-reduction of basic synthetic iron ore briquettes by carbon to make iron nuggets at high temperature[D]. Wuhan:Wuhan University of Science and Technology,2012.(in Chinese)
    [12] 孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001. SUN Chuanyao, YIN Wanzhong. Flotation principles of silicate minerals[M]. Beijing:Science Press,2001.(in Chinese)
    [13] 陈家祥.炼钢常用图表数据手册[M].2版.北京:冶金工业出版社,2010. CHEN Jiaxiang. Handbook of common chart data for steelmaking process[M]. 2th ed. Beijing:The Metallurgical Industry Press,2010.(in Chinese)
    [14] Bjorn O M, David V. Interaction between fluorine and silica in quenched melts on the joins SiO2-AlF3, and SiO2-NaF determined by raman spectroscopy[J]. Physicss & schemistry of Minerals,1985,12(2):77-85.
    [15] 赵运才,肖汉宁,谭伟. CaF2添加量对玻璃陶瓷晶化过程及材料性能的影响[J].中国陶瓷工业,2002,9(6):33-36. ZHAO Yuncai, XIAO Hanning, TAN Wei. Effect of different amount of CaF2 added on crystallization and properties of glass-ceramic[J]. China ceramic industry,2002,9(6):33-36.(in Chinese)
    [16] Kim H, Sohn I. Effect of CaF2 and Li2O additives on the viscosity of CaO-SiO2-Na2O slags[J]. ISIJ International,2011, 51(1):1-8.
    [17] 张代东,吴润.材料科学基础[M].北京:北京大学出版社,2011. ZHANG Daidong, WU Run. Fundamentals of materials science[M]. Beijing:Peking University Press,2011.(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛正良,肖承鹏,杭桂华,熊天宇,谢煜程. CaF2强化红土镍矿自还原过程中金属相聚集长大行为[J].重庆大学学报,2017,40(12):43-51.

复制
分享
文章指标
  • 点击次数:880
  • 下载次数: 1292
  • HTML阅读次数: 695
  • 引用次数: 0
历史
  • 收稿日期:2017-07-19
  • 在线发布日期: 2018-01-03
文章二维码