矿井突水水源判别的改进ESN神经网络模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X936

基金项目:

教育部创新团队发展计划项目(IRT_16R22)。


Improved ESN neural network model for mine water inrush identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水化学特征相似的水源类型,采用传统的预测模型难以准确判别。运用水化学成分分析法和FCM聚类分析法对26个典型的水源样本进行相似度分析,并提取了4个相似度较高的水源样本作为待测样本,将其载入一种基于阻尼最小二乘正则化方法的GA_ESN判别模型,并与改进的GA_BP和标准GA_ESN模型的判别结果进行对比。结果表明:改进的GA_BP判别模型效果最差,预测准确率只有50%;标准GA_ESN模型的回判准确率和预测准确率均达到100%,但其判别精度对模型的复杂程度要求较高,且易出现过拟合问题;而改进的GA_ESN判别模型能够弥补上述模型的不足,不仅简化模型训练过程,还能提高水源的判别精度。因此,该模型可作为一种快速有效判别矿井突水来源的新方法。

    Abstract:

    It is difficult to judge the type of water source with similar water chemistry characteristics by the traditional water prediction model. The similarity analysis of 26 typical water samples is carried out by using water chemical composition analysis and FCM (fuzzy C-means)cluster analysis method. Four samples with higher similarity are extracted as samples to be tested and loaded into the GA_ESN discriminant model based on damped least squares regularization method, and the GA_ESN discriminant model of the regularization method is compared with the improved GA_BP and the standard GA_ESN model. The results show that the improved GA_BP discriminant model has the worst effect and the prediction accuracy is only 50%. The back estimation rates and prediction accuracy of the standard GA_ESN model are 100%, however, the accuracy of the model requires a high degree of complexity of the model, and it's prone to have overfitting problem. And the improved GA_ESN discriminant model can make up for the shortage of the above model, which can not only simplify the model training process, but also improve the accuracy of water source identification. Therefore, the model can be used as a fast and effective method to identify the source of mine water inrush.

    参考文献
    相似文献
    引证文献
引用本文

李垣志,牛国庆,张轩轩.矿井突水水源判别的改进ESN神经网络模型[J].重庆大学学报,2017,40(12):87-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-03
  • 出版日期:
文章二维码