原子尺度上的波
作者:
中图分类号:

O343

基金项目:

国家自然科学基金资助项目(11372104,11332013,11372363);重庆市自然科学基金资助项目(CSTC2015-JCYJA50021)。


Wave at the atomic scale
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出全同粒子以及虚粒子假设,并推导了二维速度控制条件,再结合原子势函数,在原子尺度上描述了线性波的传播。考虑晶格非谐性以及位错的影响,进一步探究了二阶非线性波的产生机理。理论分析表明,晶格非谐性和位错引起的晶格畸变会诱发产生高阶虚粒子,高阶虚粒子是高阶非线性波产生的关键因素,位错等材料早期非线性或细微损伤导致高阶虚粒子增多而引发明显的高次谐波,因此,可以通过探测高次谐波诊断材料早期损伤。

    Abstract:

    With proposing identical particle and virtual particle hypothesis, the control condition of two-dimensional velocity is derived,and the propagation of linear waves is described at the atomic scale with using interatomic potential functions.Furthermore, the generation mechanism of the second-order nonlinear waves is studied by considering the effects of lattice anharmonicity and dislocation. The study shows that the lattice distortion caused by lattice anharmonicity and dislocation induces high-order virtual particles, which are the key factor in generating the high-order nonlinear waves, and early-stage nonlinearities or micro-damages, e.g., dislocation, lead to the increase of the high-order virtual particles, which induces obvious high-order nonlinear waves. Therefore, the early-stage micro-damages can be identified by detecting the high-order nonlinear waves.

    参考文献
    [1] Hu B, Hu N, Li L, et al. Tomographic reconstruction of damage images in hollow cylinders using Lamb waves[J]. Ultrasonics, 2014,54:2015-23.
    [2] Liu Y, Hu N, Xu H, et al. Damage evaluation based on a wave energy flow map using multiple PZT sensors[J]. Sensors, 2014,14:1902-17.
    [3] Liu Y, Li Y, Liu F, et al. Monitoring of local plasticity using Lamb waves[J]. Advances in Structural Engineering, 2015,18:339-52.
    [4] Rose J L. A baseline and vision of ultrasonic guided wave inspection potential[J]. The Shock and Vibration Digest, 2002;124:273-82.
    [5] Cantrell J h, Yost W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001,23:487-90.
    [6] Kim J Y, Jacobs L J, Qu J. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves[J]. Journal of the Acoustical Society of America, 2006,120:1266-73.
    [7] Nagy P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998,36:375-381.
    [8] Ostrovsky L A, Gurbatov S N, Didenkulov J N. Nonlinear acoustics in Nizhni Novgorod (A review)[J]. Acoustical Physics, 2005,51:114-27.
    [9] Pruell C, Qu J, Jacobs L J. Evaluationoffatiguedamageusingnonlinearguidedwaves[J]. Smart Materials & Structures, 2009,18:2202-21.
    [10] Ryles M, Ngau F H, Mcdonald I, et al. Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008,31:674-83.
    [11] Sagar S P, Das S, Parid A N,et al. Non-linear ultrasonic technique to assess fatigue damage in structural steel[J]. Scripta Materialia, 2006,55:199-202.
    [12] Shui G S, Wang Y S. Nondestructive evaluation of material damage using nonlinear Rayleigh waves approach[J]. Advanced Materials Research,2012,463-464:1522-1526.
    [13] Cantrell J H. Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals[J]. Proceedings of the Royal Society A, 2004,460:757-80.
    [14] Bermes C. Generation and detection of nonlinear Lamb waves for the characterization of material nonlinearities[D]. Georgia:School of Civil and Environmental Engineering,Georgia Institute of Technology,2006.
    [15] Broda D, Staszewskl W J, Martowicz A, et al. Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound-A review[J]. Journal of Sound & Vibration, 2014,333:1097-1118.
    [16] 吴家龙. 弹性力学[M].北京:高等教育出版社,2011. WU Jialong.Elastic Mechanics[M]. Beijing:Higher Education Press, 2011.(in Chinese)
    [17] M.玻恩, 黄昆, 葛惟锟, 等. 晶格动力学理论-北京大学物理学丛书[M].北京:北京大学出版社,1989. Born M, HUANG Kun,GE Weikun, et al. Dynamical Theory of Crystal Lattices-Peking University Physics Series[M].Beijing:Peking University Press,1989.(in Chinese)
    [18] 黄坤. 固体物理学[M].北京:高等教育出版社; 1988. HUANG Kun. Solid State Physics[M]. Beijing:Higher Education Press, 1988.(in Chinese)
    [19] 张邦维.嵌入原子方法理论及其在材料科学中的应用:原子尺度材料设计理论[M].长沙:湖南大学出版社,2003. ZHANG Bangwei.Theory of embedded atom method and its application to materials science:theory of material design at the atomic scale[M].Changsha:Hunan University Press,2003.(in Chinese)
    [20] Ming H, Su Z, Qiang W, et al. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization:Theory, simulation, and experimental validation[J]. Ultrasonics, 2013, 54:770-778.
    [21] Hikata A, Sewell J, Elbaum C. Generation of ultrasonic second and third harmonics due to dislocations[J]. Phys Rev, 1966,144:469-77.
    [22] Hikata A, Chick B B, Elbaum C. Dislocation contribution to the second harmonic generation of ultrasonic waves[J]. Journal of Applied Physics,1965,36:229-36.
    [23] Cantrell J H, Yost W T. Acoustic harmonic generation from fatigue-induced dislocation dipoles[J]. Philosophical Magazine A,1994,69:315-26.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙晓强,刘瑶璐,胡宁.原子尺度上的波[J].重庆大学学报,2018,41(1):1-8.

复制
分享
文章指标
  • 点击次数:1204
  • 下载次数: 1123
  • HTML阅读次数: 480
  • 引用次数: 0
历史
  • 收稿日期:2017-08-12
  • 在线发布日期: 2018-01-31
文章二维码