模糊PID双层参数整定及其在固化炉中的应用
作者:
中图分类号:

TP273

基金项目:

国家重点基础研究发展规划(973计划)资助项目(2011CB013104);国家自然科学基金资助项目(51175519)。


Two-level tuning for fuzzy PID control and its application to curing oven
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种模糊PID (proportion integration differentiation)控制器的双层参数整定方法。将模糊PID控制器的参数整定分为比例因子的整定与模糊隶属度函数参数整定2部分。推导出模糊PID控制器的解析模型,该解析模型包括线性部分和非线性补偿2个部分。整定的过程中,把模糊PID控制器解析模型的非线性补偿看作过程扰动,由线性部分和被控对象的二阶纯时滞模型,基于系统的增益裕度关系,导出模糊PID控制器的比例因子。再基于粒子群优化算法(PSO,particle swarm optimization)对三角隶属度函数进行优化,使控制器进一步适应被控对象的动态特性。仿真结果表明了研究方法的有效性以及应用在芯片固化炉的温度控制过程中,提升温度控制的效果。

    Abstract:

    A two-level tuning method for fuzzy PID(proportion integration differentiation) controller is proposed. It includes scale factor tuning and member function tuning. An analytical model of fuzzy PID controller is derived first, which consists of a linear item and a nonlinear compensation item. The nonlinear compensation item is considered as a process disturbance, fuzzy PID control is tuned with the linear item and the SOPDT(second-order plus dead-time) model of plant based on the gain margin. Then triangle member functions are tuned by PSO (particle swarm optimization) algorithm. Simulations show that the proposed method is effective. Finally, the method is applied to the temperature control process of curing oven to improve the temperature control effect.

    参考文献
    [1] Duan, X G, Han X L, Hua D, et al. Effective tuning method for fuzzy PID with internal model control[J]. Industrial & Engineering Chemistry Research,2008,47(21):8317-8323.
    [2] Liu L, Feng P, Xue D Y. Variable-order fuzzy fractional PID controller[J]. Isa Transactions,2015,55(2):227-233.
    [3] Liu J R. A novel PID tuning method for load frequency control of power systems[C]//International Conference on Anti-Counterfeiting, Security, and Identification in Communication.[S.L.]:IEEE,2009:13-16.
    [4] Azar A T, Fernando E. Serrano. Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications[J]. Neural Computing & Applications,2014,25(5):983-995.
    [5] Chikashi N, Matsui T, Fujiwara H, et al. Development of PSO-based PID tuning method[C]//International Conference on Control.[S.L.]:Automation and Systems,2008:324-326.
    [6] Li H X, Gatland H. Conventional fuzzy logic control and its enhancement[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B,1996,26(10):791-797.
    [7] George K I M, Hu B G, Raymond G G, et al. Two-level tuning of fuzzy PID cotrollers[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,2001,31(2):263-269.
    [8] Woo Z W, Chung H Y, Lin J J, et al. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems,2000,115(2):321-326.
    [9] Rajani K M, Nikhil R P. A self-tuning fuzzy PI controller[J]. Fuzzy Sets and Systems,2000,115(2):327-338.
    [10] Yesil E, Guzelkaya M, Eksin I. Self tuning fuzzy PID type load and frequency controller[J]. Energy Conversion and Management,2004,45(3):377-390.
    [11] Li H X. A comparative design and tuning for conventional fuzzy control[J]. IEEE Transactions on Systems, Man, and Cybernetics,1997,27(5):884-889.
    [12] Persoone G R, Baudo M, Cotman C, et al. Brushless DC motor fuzzy PID control system and simulation[J]. Knowledge & Management of Aquatic Ecosystems,2014,32(393):115-118.
    [13] Zhang Y SH, Yang T, Li CH Y, et al. Fuzzy-PID control for the position loop of aerial inertially stabilized platf-orm[J]. Aerospace Science & Technology,2014,36:21-26.
    [14] 应行仁.采用最大隶属度决策方法的模糊逻辑控制器分析[D].北京:中科院自动化研究所,1981. Ying Xingren, The fuzzy logic controller based on the maximum membership decision method[D]. Beijing:Chinese Academey of Sciences Institute of Automation,1981.
    [15] Li H X, Gatland H B, Green A W, et al. Fuzzy variable structure control[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,1997,27(2):36-39.
    [16] 王亚刚,邵惠鹤.基于幅值裕度和相位裕度的自整定PID控制器[J].控制与决策,2000,15(5):589-591. WANG Yagang, SHAO Huihe. Self-tuning PID controller based on amplitude margin and phase margin[J]. Control and Decision,2000.15(5):589-591.
    [17] 全亚斌,张卫东,许晓鸣.二阶加延时模型的阶跃响应辨识方法[J].控制理论与应用,2002,19(6):954-956. QUAN Yabin, ZHANG Weidong, XU Xiaoming. The step response identification method of second order delay model[J]. Control Theory and Application,2002,19(6):954-956.
    [18] 蔡文剑,刘少远.工业过程辨识与控制[M].北京:化学工业出版社,2005. CAI Wenjian, LIU Shaoyuan. Industrial process identification and control[M]. Beijing:Chemical Industry Press,2005.
    [19] Astrom K J, Hagg lund T. PID controllers:Theory, design and tuning[M]. Alexander:Instrument Society of America,1995.
    [20] 曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. ZENG Jianchao, CUI Zhihua. A PSO algorithm to ensure global convergence[J].Computer Research and Development,2004,41(8):1333-1338.
    [21] 王唯一,张明泉,杨帆,等.基于粒子群算法的PID调速系统的研究[J].控制工程,2015,22(6):1082-1086. WANG Weiyi, ZHANG Mingquan, YANG Fan, et al. Research on PID speed control system based on particle swarm optimization[J]. Control Engineering,2015,22(6):1082-1086.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈平,段小刚.模糊PID双层参数整定及其在固化炉中的应用[J].重庆大学学报,2018,41(1):78-87.

复制
分享
文章指标
  • 点击次数:967
  • 下载次数: 1125
  • HTML阅读次数: 752
  • 引用次数: 0
历史
  • 收稿日期:2017-06-12
  • 在线发布日期: 2018-01-31
文章二维码