多种流形覆盖方式耦合的数值流形法及其应用
作者:
中图分类号:

O347.7

基金项目:

国家自然科学基金资助项目(51204137);四川省科技计划资助项目(2017JY0128);西南科技大学研究生创新基金资助项目(16ycx108)。


A numerical manifold method coupling multiple types of manifold covers and its applications
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了更好地利用数值流形法(NMM)模拟连续和非连续问题,根据NMM数学覆盖选择的灵活性,将有限元网格作为一种数学覆盖方式生成流形覆盖系统以避免细小流形单元的出现,并提出了将单个材料体描述为一个流形单元的独立覆盖方法。运用多种覆盖方式相耦合的方法模拟了混凝土的细观拉压模型,以及一个复杂结构岩质边坡模型,模拟结果较好地再现了相应的力学变形破坏过程。多种覆盖方式的耦合使得构建的NMM模拟模型更加合理;独立覆盖方式的使用降低了构建离散体系NMM模型的复杂程度,并减少了模型中的单元数量以及不连续面上的接触数量,提高了模拟计算效率。

    Abstract:

    To better use the numerical manifold method (NMM) to simulate complex continuous and discontinuous deformation problems, for the flexibility of the choice of mathematical covers in the NMM, we adopt the finite element mesh to generate NMM mathematical covers so as to avoid the appearance of too-small manifold elements, and put forward an independent cover method, in which a single material domain is described as one manifold element. Different cover types are coupled in the simulations of the tensile and compressive concrete meso-scale models, as well as a rock slope model with complex structures. The corresponding mechanical deformation and failure processes are well reproduced by NMM simulations. The coupling use of different cover types makes the generated NMM simulation models more reasonable. The independent cover method decreases the complexity to construct NMM simulation models for discrete systems, and reduces the numbers of manifold elements and the contact numbers along discontinuity surfaces, which helps to improve the NMM computational efficiency.

    参考文献
    [1] 刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490. LIU Kaixin, GAO Lingtian. A review on the discrete element method[J]. Advances in Mechanics, 2003, 33(4):483-490.(in Chinese)
    [2] 张国新,赵妍,石根华,等.模拟岩石边坡倾倒破坏的数值流形法[J].岩土工程学报,2007,29(6):800-805. ZHANG Guoxin, ZHAO Yan, SHI Genhua, et al. Toppling failure simulation of rock slopes by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6):800-805. (in Chinese)
    [3] Mahabadi O K, Lisjak A, Munjiza A, et al. Y-Geo:New combined finite-discrete element numerical code for geomechanical applications[J]. International Journal of Geomechanics, 2012, 12(6):676-688.
    [4] Ma G W, An X M, He L. The numerical manifold method:a review[J]. International Journal of Computational Methods, 2010, 7(1):1-32.
    [5] 蔡永昌,张湘伟.流形方法的矩形覆盖系统及其全自动生成算法[J].重庆大学学报(自然科学版),2001,24(1):42-46. CAI Yongchang, ZHANG Xiangwei. Rectangular cover system of manifold method and its auto mesh algorithm[J]. Journal of Chongqing University (Natural Science Edition), 2001,24(1):42-46. (in Chinese)
    [6] 陈刚,刘佑荣.流形元覆盖系统的有向图遍历生成算法研究[J].岩石力学与工程学报,2003,22(5):711-716. CHEN Gang, LIU Yourong. Generation of cover system for numerical manifold in travel theory of the oriented graph[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):711-716. (in Chinese)
    [7] 李海枫,张国新,石根华,等.流形切割及有限元网格覆盖下的三维流形单元生成[J].岩石力学与工程学报,2010,29(4):731-742. LI Haifeng, ZHANG Guoxin, SHI Genhua, et al. Manifold cut and generation of three-dimensional manifold element under FE mesh cover[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4):731-742.(in Chinese)
    [8] 蔡永昌,刘高扬.基于独立覆盖的高阶流形方法[J].同济大学学报(自然科学版),2015,43(12):1794-1800. CAI Yongchang, LIU Gaoyang. High-order manifold method with independent covers[J]. Journal of Tongji University (Natural Science), 2015, 43(12):1794-1800.(in Chinese)
    [9] 苏海东,颉志强,龚亚琦,等.基于独立覆盖的流形法的收敛性及覆盖网格特性[J].长江科学院院报,2016,33(2):131-136. SU Haidong, XIE Zhiqiang, GONG Yaqi, et al. Characteristics of convergence and cover mesh in numerical manifold method based on independent covers[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(2):131-136.(in Chinese)
    [10] 黄涛.聚合物粘结炸药损伤与断裂的流形元数值模拟[D].北京:北京理工大学,2006. HUANG Tao. Numerical simulation of damage and fracture of polymer explosive by manifold method[D]. Beijing:Beijing Institute of Technology, 2006. (in Chinese)
    [11] 赵妍.基于流形元法的裂缝追踪技术在结构破坏模拟中的应用研究[D].北京:中国水利水电科学研究院,2008. ZHAO Yan. Crack tracking techniques based on the manifold method and its applications in structure failure simula-tions[D]. Beijing:China Institute of Water Resources and Hydropower Research, 2008. (in Chinese)
    [12] 黄涛,陈鹏万,张国新,等.岩石双孔爆破过程的流形元法模拟[J].爆炸与冲击,2006,26(5):434-440. HUANG Tao, CHEN Pengwan, ZHANG Guoxin, et al. Numerical simulation of two hole blasting using numerical manifold method[J]. Explosion and Shock Waves, 2006, 26(5):434-440. (in Chinese)
    [13] Ning Y J, An X M, Ma G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6):964-975.
    [14] An X M, Ning Y J, Ma G W, et al. Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7):679-701.
    [15] Goodman R E, Kieffer D S. Behavior of rock in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8):675-684.
    [16] Goodman R E. Toppling-A fundamental failure mode in discontinuous materials-description and analysis[C]//[S.l.]Geo-Congress 2013:Stability and Performance of Slopes and Embankments Ⅲ. 2013:2338-2368.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

武鑫,郭璇,康歌,甯尤军.多种流形覆盖方式耦合的数值流形法及其应用[J].重庆大学学报,2018,41(5):60-67.

复制
分享
文章指标
  • 点击次数:1039
  • 下载次数: 1567
  • HTML阅读次数: 769
  • 引用次数: 0
历史
  • 收稿日期:2017-12-29
  • 在线发布日期: 2018-05-23
文章二维码