基于改进人工蜂群算法和极限学习机的刀具磨损监测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划资助项目(2015BAF02B02)。


Tool wearmonitoring based on improved artificial bee colony algorithm and extreme learning machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高机械切削加工中刀具磨损量的实时监测精度,运用极限学习机建立刀具磨损监测模型,提出一种引入虚拟蜂的改进人工蜂群算法,对极限学习机随机产生的输入层权值和隐含层阈值进行优化。采用时域分析和经验模态分解,提取铣削加工中的切削力信号、振动信号以及声发射信号的时域特征和内禀模态能量比,从中选出对刀具磨损敏感的特征作为监测特征。利用建立的监测模型计算得到刀具磨损值,实验结果表明,优化后的极限学习机能够准确地预测刀具磨损值,且具有更简单的网络结构,同时改进后的蜂群算法也表现出了更好的寻优能力。

    Abstract:

    To improve the real-time monitoring accuracy of the actual wear of cutting tools, Extreme Learning Machine (ELM) algorithm was applied to establish the tool wear model. An Improved Artificial Bee Colony (IABC) algorithm with a virtual bee was proposed to tune the input layer weights as well as the hidden layer biases in ELM. Time-domain analysis and Empirical Mode Decomposition (EMD) were used to extract the time-domain features and energy ratio of Intrinsic Mode Function (IMF) from cutting force signal, vibration signal and acoustic emission signal, and the features sensitive to tool wear were selected as the monitoring features. Then the tool wear value could be calculated through the trained model. The result show that the optimized ELM can predict the tool wear value accurately, and has a simpler network structure. Meanwhile, the IABC algorithm also shows a better searching ability.

    参考文献
    相似文献
    引证文献
引用本文

郭一君,周杰,王时龙,易力力,康玲,高波.基于改进人工蜂群算法和极限学习机的刀具磨损监测[J].重庆大学学报,2018,41(6):1-8.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-10
  • 出版日期:
文章二维码